Конформационная динамика нуклеиновых кислот при взаимодействии с лигандами (1098269), страница 45
Текст из файла (страница 45)
—Aug. — Vol. 251, no. 1. — Pp. 76–94.276. Parkinson G. N., Lee M. P. H., Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA // Nature. — 2002. — June. — Vol. 417,no. 6891. — Pp. 876–880.277. Parkinson G. N., Cuenca F., Neidle S. Topology conservation and loop flexibility in quadruplex-drug recognition: crystal structures of inter- and intramolecular telomeric DNA quadruplex-drug complexes // Journal of molecular biology. — 2008.
— Sept. — Vol. 381, no. 5. — Pp. 1145–1156.278. Ambrus A. [et al.] Solution structure of the biologically relevant G-quadruplexelement in the human c-MYC promoter. Implications for G-quadruplex stabilization // Biochemistry. — 2005. — Feb.
— Vol. 44, no. 6. — Pp. 2048–2058.298279. Phan A. T. [et al.] Small-molecule interaction with a five-guanine-tract Gquadruplex structure from the human MYC promoter // Nature chemical biology. — 2005. — Aug. — Vol. 1, no. 3. — Pp. 167–173.280. Hsu S.-T. D. [et al.] A G-rich sequence within the c-kit oncogene promoterforms a parallel G-quadruplex having asymmetric G-tetrad dynamics // Journal of the American Chemical Society. — 2009.
— Sept. — Vol. 131, no.37. — Pp. 13399–13409.281. Kuryavyi V., Phan A. T., Patel D. J. Solution structures of all parallel-strandedmonomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter // Nucleic acids research. — 2010. — Oct. — Vol. 38, no. 19. —Pp. 6757–6773.282. Matsugami A. [et al.] An intramolecular quadruplex of (GGA)(4) triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and itsdimeric interaction // Journal of molecular biology. — 2001. — Oct. — Vol.313, no.
2. — Pp. 255–269.283. Phan A. T. [et al.] An interlocked dimeric parallel-stranded DNA quadruplex:a potent inhibitor of HIV-1 integrase // Proceedings of the National Academyof Sciences of the United States of America. — 2005. — Jan. — Vol. 102,no. 3. — Pp. 634–639.284. Kettani A. [et al.] Solution structure of a Na cation stabilized DNA quadruplex containing G-G-G-G and G-C-G-C tetrads formed by G-G-G-C repeatsobserved in adeno-associated viral DNA // Journal of molecular biology. —1998. — Sept. — Vol. 282, no. 3. — Pp.
619–636.285. Bouaziz S., Kettani A., Patel D. J. A K cation-induced conformational switchwithin a loop spanning segment of a DNA quadruplex containing G-G-G-C299repeats // Journal of molecular biology. — 1998. — Sept. — Vol. 282, no.3. — Pp. 637–652.286. Kettani A. [et al.] A two-stranded template-based approach to G.(C-A) triadformation: designing novel structural elements into an existing DNA framework // Journal of molecular biology. — 2000.
— Aug. — Vol. 301, no. 1. —Pp. 129–146.287. Smith F. W., Feigon J. Quadruplex structure of Oxytricha telomeric DNAoligonucleotides // Nature. — 1992. — Mar. — Vol. 356, no. 6365. — Pp. 164–168.288. Smith F. W., Feigon J. Strand orientation in the DNA quadruplex formed fromthe Oxytricha telomere repeat oligonucleotide d(G4T4G4) in solution // Biochemistry. — 1993.
— Aug. — Vol. 32, no. 33. — Pp. 8682–8692.289. Haider S. M., Parkinson G. N., Neidle S. Structure of a G-quadruplex-ligandcomplex // Journal of molecular biology. — 2003. — Feb. — Vol. 326, no.1. — Pp. 117–125.290. Campbell N. H. [et al.] Selectivity in ligand recognition of G-quadruplexloops // Biochemistry. — 2009. — Mar. — Vol. 48, no. 8.
— Pp. 1675–1680.291. Gill M. L., Strobel S. A., Loria J. P. 205Tl NMR methods for the characterization of monovalent cation binding to nucleic acids // Journal of the AmericanChemical Society. — 2005. — Nov. — Vol. 127, no. 47. — Pp. 16723–16732.292. Gill M. L., Strobel S. A., Loria J. P. Crystallization and characterization ofthe thallium form of the Oxytricha nova G-quadruplex // Nucleic acids research. — 2006. — Vol. 34, no. 16.
— Pp. 4506–4514.300293. Balkwill G. D. [et al.] Folding topology of a bimolecular DNA quadruplexcontaining a stable mini-hairpin motif within the diagonal loop // Journal ofmolecular biology. — 2009. — Feb. — Vol. 385, no. 5. — Pp. 1600–1615.294. Sket P., Crnugelj M., Plavec J. d(G3T4G4) forms unusual dimeric Gquadruplex structure with the same general fold in the presence of K+, Na+ orNH4+ ions // Bioorganic & medicinal chemistry. — 2004. — Nov.
— Vol. 12,no. 22. — Pp. 5735–5744.295. Crnugelj M., HudN. V., Plavec J. The solution structure ofd(G(4)T(4)G(3))(2): a bimolecular G-quadruplex with a novel fold // Journalof molecular biology. — 2002. — July. — Vol. 320, no. 5. — Pp. 911–924.296. Keniry M. A. [et al.] Solution structure of the Na+ form of the dimeric guaninequadruplex [d(G3T4G3)]2 // European journal of biochemistry / FEBS. —1995. — Oct.
— Vol. 233, no. 2. — Pp. 631–643.297. Parkinson G. N., Ghosh R., Neidle S. Structural basis for binding of porphyrinto human telomeres // Biochemistry. — 2007. — Mar. — Vol. 46, no. 9. —Pp. 2390–2397.298. Campbell N. H. [et al.] Structural basis of DNA quadruplex recognition byan acridine drug // Journal of the American Chemical Society. — 2008.
—May. — Vol. 130, no. 21. — Pp. 6722–6724.299. Kuryavyi V., Phan A. T., Patel D. J. Solution structures of all parallel-strandedmonomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter // Nucleic acids research. — 2010. — Oct. — Vol. 38, no. 19. —Pp. 6757–6773.301300. Webba da Silva M. Association of DNA quadruplexes through G:C:G:Ctetrads. Solution structure of d(GCGGTGGAT) // Biochemistry. — 2003. —Dec. — Vol. 42, no. 49. — Pp. 14356–14365.301.
Kettani A. [et al.] A dimeric DNA interface stabilized by stackedA.(G.G.G.G).A hexads and coordinated monovalent cations // Journal ofmolecular biology. — 2000. — Mar. — Vol. 297, no. 3. — Pp. 627–644.302. Webba da Silva M. Experimental demonstration of T:(G:G:G:G):T hexad andT:A:A:T tetrad alignments within a DNA quadruplex stem // Biochemistry. —2005. — Mar. — Vol. 44, no. 10. — Pp.
3754–3764.303. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase // Science (New York,N.Y.) — 1990. — Aug. — Vol. 249, no. 4968. — Pp. 505–510.304. Ikebukuro K. [et al.] A novel method of screening thrombin-inhibiting DNAaptamers using an evolution-mimicking algorithm // Nucleic Acids Research. — 2005. — Jan.
— Vol. 33, no. 12. — e108–e108.305. Schultze P., Macaya R. F., Feigon J. Three-dimensional solution structure ofthe thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG) // Journal ofmolecular biology. — 1994. — Feb. — Vol. 235, no. 5. — Pp. 1532–1547.306. Padmanabhan K. [et al.] The structure of alpha-thrombin inhibited by a15-mer single-stranded DNA aptamer // The Journal of biological chemistry. — 1993. — Aug. — Vol.
268, no. 24. — Pp. 17651–17654.307. Kelly J. A., Feigon J., Yeates T. O. Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG) // Journalof molecular biology. — 1996. — Mar. — Vol. 256, no. 3. — Pp. 417–422.302308. Tasset D. M., Kubik M. F., Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes // Journal of molecular biology.
—1997. — Oct. — Vol. 272, no. 5. — Pp. 688–698.309. Pagano B. [et al.] Stability and binding properties of a modified thrombinbinding aptamer // Biophysical journal. — 2008. — Jan. — Vol. 94, no. 2. —Pp. 562–569.310. Fadrní E. [et al.] Molecular dynamics simulations of Guanine quadruplexloops: advances and force field limitations // Biophysical journal. — 2004. —July.
— Vol. 87, no. 1. — Pp. 227–242.311. Sponer J., Spackoví N. Molecular dynamics simulations and their applicationto four-stranded DNA // Methods (San Diego, Calif.) — 2007. — Dec. — Vol.43, no. 4. — Pp. 278–290.312. Fadrní E. [et al.] Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields // Journal of Chemical Theoryand Computation.
— 2009. — Sept. — Vol. 5, no. 9. — Pp. 2514–2530.313. Haider S., Neidle S. Molecular modeling and simulation of G-quadruplexesand quadruplex-ligand complexes // Methods in molecular biology (Clifton,N.J.) — 2010. — Vol. 608. — Pp. 17–37.314.
Hazel P., Parkinson G. N., Neidle S. Predictive modelling of topology and loopvariations in dimeric DNA quadruplex structures // Nucleic acids research. —2006. — Vol. 34, no. 7. — Pp. 2117–2127.315. Cavallari M. [et al.] Stability and migration of metal ions in G4-wires bymolecular dynamics simulations // The journal of physical chemistry. B. —2006. — Dec. — Vol.
110, no. 51. — Pp. 26337–26348.303316. Cheatham T E 3., Cieplak P., Kollman P. A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat //Journal of biomolecular structure & dynamics. — 1999. — Feb. — Vol. 16,no. 4. — Pp. 845–862.317. Wang J., Cieplak P., Kollman P. A. How well does a restrained electrostaticpotential (RESP) model perform in calculating conformational energies of organic and biological molecules? // Journal of Computational Chemistry. —2000. — Sept.
— Vol. 21, no. 12. — Pp. 1049–1074.318. Pérez A. [et al.] Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers // Biophysical journal. —2007. — June. — Vol. 92, no. 11. — Pp. 3817–3829.319. Pérez A., Luque F. J., Orozco M. Dynamics of B-DNA on the microsecondtime scale // Journal of the American Chemical Society. — 2007. — Nov. —Vol. 129, no. 47.
— Pp. 14739–14745.320. Byrd R. H. [et al.] A Limited Memory Algorithm for Bound Constrained Optimization // SIAM Journal on Scientific Computing. — 1995. — Sept. — Vol.16, no. 5. — Pp. 1190–1208.321. Ahmed H. U. [et al.] The determination of protonation states in proteins // Actacrystallographica. Section D, Biological crystallography. — 2007. — Aug. —Vol.
63, Pt 8. — Pp. 906–922.322. Stefl R. [et al.] Formation pathways of a guanine-quadruplex DNA revealedby molecular dynamics and thermodynamic analysis of the substates // Biophysical journal. — 2003. — Sept. — Vol. 85, no. 3. — Pp. 1787–1804.323. Russo Krauss I. [et al.] High-resolution structures of two complexes betweenthrombin and thrombin-binding aptamer shed light on the role of cations in304the aptamer inhibitory activity // Nucleic acids research. — 2012. — Sept.