Конформационная динамика нуклеиновых кислот при взаимодействии с лигандами (1098269), страница 47
Текст из файла (страница 47)
—2009. — Feb. — Vol. 37, no. 3. — Pp. 972–82.371. Vairamani M., Gross M. L. G-Quadruplex Formation of Thrombin-BindingAptamer Detected by Electrospray Ionization Mass Spectrometry // Journalof the American Chemical Society. — 2003. — Vol. 125, no. 1. — Pp. 42–43. — eprint: http://pubs.acs.org/doi/pdf/10.1021/ja0284299.372. Turjanski A., Hummer G., Gutkind J. How mitogen-activated protein kinasesrecognize and phosphorylate their targets: A QM/MM study. // J Am ChemSoc. — 2009.
— May. — Vol. 131, no. 17. — Pp. 6141–8.373. Kankia B., Marky L. Folding of the thrombin aptamer into a G-quadruplexwith Sr(2+): stability, heat, and hydration. // J Am Chem Soc. — 2001. —Nov. — Vol. 123, no. 44. — Pp. 10799–804.374. Nagatoishi S., Tanaka Y., Tsumoto K. Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex understabilizing-cation-deficient conditions. // Biochem Biophys Res Commun. —2007.
— Jan. — Vol. 352, no. 3. — Pp. 812–7.375. Stadlbauer P. [et al.] Structural dynamics of possible late-stage intermediatesin folding of quadruplex DNA studied by molecular simulations. // NucleicAcids Res. — 2013. — Aug. — Vol. 41, no. 14. — Pp. 7128–43.311376. Dolinnaya N. [et al.] Coexistence of G-quadruplex and duplex domains withinthe secondary structure of 31-mer DNA thrombin-binding aptamer. // J BiomolStruct Dyn. — 2012. — June. — Vol.
30, no. 5. — Pp. 524–31.377. Ikebukuro K. [et al.] Novel strategy for DNA aptamers inhibiting enzymaticactivity using algorithm mimicking evolution. // Nucleic Acids Res Suppl. —2003. — July. — No. 3. — Pp. 205–6.378. Yarotski D. [et al.] Scanning tunneling microscopy of DNA-wrapped carbonnanotubes.
// Nano Lett. — 2009. — Jan. — Vol. 9, no. 1. — Pp. 12–7.379. Alexeev Y. [et al.] GAMESS as a free quantum-mechanical platform for drugresearch. // Curr Top Med Chem. — 2012None. — Vol. 12, no. 18. —Pp. 2013–33.380. Dupradeau F. [et al.] The R.E.D. tools: advances in RESP and ESP chargederivation and force field library building. // Phys Chem Chem Phys.
—2010. — July. — Vol. 12, no. 28. — Pp. 7821–39.381. Weber J., Pande V. Characterization and rapid sampling of protein foldingMarkov state model topologies. // J Chem Theory Comput. — 2011. — Oct. —Vol. 7, no. 10. — Pp. 3405–3411.382. Schwantes C., Pande V. Improvements in Markov State Model ConstructionReveal Many Non-Native Interactions in the Folding of NTL9. // J Chem Theory Comput. — 2013. — Apr. — Vol. 9, no.
4. — Pp. 2000–2009.383. Sorin E. J. [et al.] RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop // J. Mol. Biol. — 2002. — Apr. — Vol. 317,no. 4. — Pp. 493–506.312384. Kannan S., Zacharias M. Folding of a DNA hairpin loop structure in explicitsolvent using replica-exchange molecular dynamics simulations // Biophys.J.
— 2007. — Nov. — Vol. 93, no. 9. — Pp. 3218–3228.385. Kannan S., Zacharias M. Role of the closing base pair for d(GCA) hairpinstability: free energy analysis and folding simulations // Nucleic Acids Res. —2011. — Oct. — Vol. 39, no. 19. — Pp. 8271–8280.386. Kannan S., Zacharias M. Simulation of DNA double-strand dissociation andformation during replica-exchange molecular dynamics simulations // PhysChem Chem Phys. — 2009.
— Dec. — Vol. 11, no. 45. — Pp. 10589–10595.387. Roxbury D., Jagota A., Mittal J. Structural characteristics of oligomeric DNAstrands adsorbed onto single-walled carbon nanotubes // J Phys Chem B. —2013. — Jan. — Vol. 117, no. 1. — Pp. 132–140.388. Roxbury D., Mittal J., Jagota A. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA // Nano Lett. — 2012. — Mar. —Vol. 12, no.
3. — Pp. 1464–1469.389. Roxbury D., Jagota A., Mittal J. Sequence-specific self-stitching motif of shortsingle-stranded DNA on a single-walled carbon nanotube // J. Am. Chem.Soc. — 2011. — Aug. — Vol. 133, no. 34. — Pp. 13545–13550.390. Curuksu J., Zacharias M. Enhanced conformational sampling of nucleic acidsby a new Hamiltonian replica exchange molecular dynamics approach // JChem Phys. — 2009.
— Mar. — Vol. 130, no. 10. — P. 104110.391. Hagen M. [et al.] Serial replica exchange // J Phys Chem B. — 2007. — Feb. —Vol. 111, no. 6. — Pp. 1416–1423.313392. Zhou L. [et al.] Precise determination, cross-recognition, and functional analysis of the double-strand origins of the rolling-circle replication plasmids inhaloarchaea // J. Bacteriol. — 2008. — Aug. — Vol. 190, no. 16. — Pp. 5710–5719.393. Ruiz-Maso J. A. [et al.] Interactions between the RepB initiator protein of plasmid pMV158 and two distant DNA regions within the origin of replication //Nucleic Acids Res.
— 2007. — Vol. 35, no. 4. — Pp. 1230–1244.394. Jaishree T. N., Wang A. H. Human chromosomal centromere (AATGG)nsequence forms stable structures with unusual base pairs // FEBS Lett. —1994. — June. — Vol. 347, no. 1. — Pp. 99–103.395. Chou S. H., Zhu L., Reid B. R. On the relative ability of centromeric GNAtriplets to form hairpins versus self-paired duplexes // J. Mol. Biol. — 1996. —June.
— Vol. 259, no. 3. — Pp. 445–457.396. Naville M., Gautheret D. Transcription attenuation in bacteria: theme and variations // Brief Funct Genomic Proteomic. — 2009. — Nov. — Vol. 8, no. 6. —Pp. 482–492.397. Smith A. M. [et al.] Riboswitch RNAs: regulation of gene expression by directmonitoring of a physiological signal // RNA Biol. — 2010.
— Vol. 7, no. 1. —Pp. 104–110.398. Mitas M. Trinucleotide repeats associated with human disease // Nucleic AcidsRes. — 1997. — June. — Vol. 25, no. 12. — Pp. 2245–2254.399. Talini G., Branciamore S., Gallori E. Ribozymes: Flexible molecular devicesat work // Biochimie. — 2011.
— Nov. — Vol. 93, no. 11. — Pp. 1998–2005.314400. Yoshizawa S. [et al.] GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins // Biochemistry. — 1997. — Apr. — Vol. 36,no. 16. — Pp. 4761–4767.401. Beauchamp K. A. [et al.] MSMBuilder2: Modeling Conformational Dynamicsat the Picosecond to Millisecond Scale // J Chem Theory Comput.
— 2011. —Oct. — Vol. 7, no. 10. — Pp. 3412–3419.402. Ma H. [et al.] DNA folding and melting observed in real time redefine theenergy landscape // Proc. Natl. Acad. Sci. U.S.A. — 2007. — Jan. — Vol.104, no. 3. — Pp. 712–716.403. Hess B. [et al.] GROMACS 4: Algorithms for Highly Efficient, LoadBalanced, and Scalable Molecular Simulation // Journal of Chemical Theoryand Computation. — 2008. — Mar. — Vol.
4, no. 3. — Pp. 435–447.404. Sorin E. J., Pande V. S. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations // Biophysical journal. — 2005. — Apr. — Vol.88, no. 4. — Pp. 2472–2493.405. Van Der Spoel D. [et al.] GROMACS: fast, flexible, and free // Journal ofcomputational chemistry. — 2005. — Dec. — Vol. 26, no. 16. — Pp. 1701–1718.406.
Hornak V. [et al.] Comparison of multiple Amber force fields and developmentof improved protein backbone parameters // Proteins. — 2006. — Nov. — Vol.65, no. 3. — Pp. 712–725.407. Bussi G., Donadio D., Parrinello M. Canonical sampling through velocityrescaling // The Journal of Chemical Physics.
— 2007. — Vol. 126, no. 1. —P. 014101.315408. Berendsen H. J. C. [et al.] Molecular dynamics with coupling to an externalbath // The Journal of Chemical Physics. — 1984. — Vol. 81, no. 8. — P. 3684.409. Darden T., York D., Pedersen L. Particle mesh Ewald: An N log(N) method forEwald sums in large systems // The Journal of Chemical Physics. — 1993. —Vol. 98, no. 12. — P. 10089.410.
Jorgensen W. L. [et al.] Comparison of simple potential functions for simulating liquid water // The Journal of Chemical Physics. — 1983. — Vol. 79,no. 2. — P. 926.411. Tsvetkov F., Devred F., Makarov A. [Thermodynamics of zinc binding to human S100A2]. // Mol Biol (Mosk). — NoneNone. — Vol. 44, no. 5. —Pp. 938–42.412. Lee W.
[et al.] PINE-SPARKY: graphical interface for evaluating automatedprobabilistic peak assignments in protein NMR spectroscopy. // Bioinformatics. — 2009. — Aug. — Vol. 25, no. 16. — Pp. 2085–7.413. Markley J. [et al.] BioMagResBank (BMRB) as a partner in the WorldwideProtein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions. // J Biomol NMR. — 2008.
— Mar. — Vol. 40, no. 3. — Pp. 153–5.414. Brnger A. T. [et al.] Crystallography & NMR system: A new software suitefor macromolecular structure determination // Acta Crystallographica SectionD. — 1998. — Sept. — Vol. 54, no. 5. — Pp. 905–921.415. Yang Z. [et al.] Amino acid analogues bind to carbon nanotube via interactions:comparison of molecular mechanical and quantum mechanical calculations. //J Chem Phys. — 2012.
— Jan. — Vol. 136, no. 2. — P. 025103.316416. Vega C., Abascal J., Nezbeda I. Vapor-liquid equilibria from the triple point upto the critical point for the new generation of TIP4P-like models: TIP4P/Ew,TIP4P/2005, and TIP4P/ice. // J Chem Phys. — 2006. — July. — Vol. 125,no. 3. — P. 34503.317.