Геометрия и комбинаторика виртуальных узлов (1097523), страница 62
Текст из файла (страница 62)
Òî, ÷òî ñðåäè çàìûêàíèé Êèøèíîóçëîâ Ki âñòðå÷àåòñÿ áåñêîíå÷íî ìíîãî ðàçëè÷íûõ óçëîâ, ñëåäóåò èç òîãî, ÷òî ýòè çàìûêàíèÿ ìîãóò èìåòü ëþáîé ñêîëü óãîäíî áîëüøîé íàïåðåäçàäàííûé ðîä.Ïîñëåäíåå óòâåðæäåíèå ñëåäóåò èç òîãî, ÷òî ñîîòâåòñòâóþùèå âèðòóàëüíûå óçëû èìåþò ñêîëü óãîäíî áîëüøîé íàïåðåä çàäàííûé ðîä â ïëîñêîéêàòåãîðèè, ò.å.
åñëè ìû ðàçðåøèì ïîìèìî îáîáùåííûõ äâèæåíèé åéäåìåéñòåðà ïðèìåíÿòü çàìåíó òèïîâ êëàññè÷åñêèõ ïåðåêðåñòêîâ (ò.å. áóäåìðàáîòàòü ñ âèðòóàëüíûìè óçëàìè ñ òî÷íîñòüþ äî èíâàðèàíòîâ Âàñèëüåâàïîðÿäêà 0). À èìåííî, îïðåäåëÿÿ ïî äèàãðàììå Ki ïîâåðõíîñòü ñ ñèñòåìîé êðèâûõ â íåé ìû ïîëó÷èì ìèíèìàëüíóþ ðåàëèçàöèþ (íå èìåþùóþ íèïåòåëü, íè äâóóãîëüíèêîâ).8.7. Áåñêîíå÷íîñòü êîëè÷åñòâà äëèííûõ óçëîâ,èìåþùèõ èêñèðîâàííîå çàìûêàíèåèñ.
8.14. Âîññòàíîâëåíèå ãðàà ïî d-äèàãðàììå3698.7. Áåñêîíå÷íîñòü êîëè÷åñòâà äëèííûõ óçëîâ,èìåþùèõ èêñèðîâàííîå çàìûêàíèåèñ. 8.15. Îòñóòñòâèå ñòðóêòóðû èñòî÷íèê-ñòîê âëå÷åò íåâëîæèìîñòü ñ ó÷åòîì A-ñòðóêòóðûèñ. 8.16. Îïåðàöèÿ′èñ. 8.17. Çàìûêàíèå Êèøèíî370ËèòåðàòóðàÏóáëèêàöèè àâòîðà ïî òåìå äèññåðòàöèè:[Ìà1℄ Ìàíòóðîâ, Â.Î.
(2005), Òåîðèÿ óçëîâ, åãóëÿðíàÿíàìèêà, Ìîñêâà-Èæåâñê, 512 ññ.è õàîòè÷åñêàÿ äè-[Ìà2℄ Ìàíòóðîâ, Â.Î. (2004), Î ïîëèíîìèàëüíûõ èíâàðèàíòàõ âèðòóàëüíûõ çàöåïëåíèé, Òðóäû ÌÌÎ, 65 (1), ññ. 175-200.[Ìà3℄ Ìàíòóðîâ, Â.Î. (2003), Î ðàñïîçíàâàíèè âèðòóàëüíûõ êîñ, Çàïèñêèíàó÷íûõ ñåìèíàðîâ ÏÎÌÈ, 299. åîìåòðèÿ è òîïîëîãèÿ, 8, ññ. 267286.[Ìà4℄ Ìàíòóðîâ, Â.Î. (2002), Èíâàðèàíòû âèðòóàëüíûõ çàöåïëåíèé,êëàäû ÀÍ, 384 (1), ññ.
1113.Äî-[Ìà5℄ Ìàíòóðîâ, Â.Î. (2003), Àòîìû è ìèíèìàëüíûå äèàãðàììû âèðòóàëüíûõ çàöåïëåíèé, Äîêëàäû ÀÍ, 391 (2), ññ. 166168.[Ìà6℄ Ìàíòóðîâ, Â.Î. (2004), Ïîëèíîì Õîâàíîâà äëÿ âèðòóàëüíûõ óçëîâ,Äîêëàäû ÀÍ, 398, (1). ññ.15-18.[Ìà7℄ Ìàíòóðîâ, Â.Î. (2003), Êðèâûå íà ïîâåðõíîñòÿõ, âèðòóàëüíûå óçëûè ïîëèíîì Äæîíñà-Êàóìàíà, Äîêëàäû ÀÍ, 390 (2) ññ. 155-157.[Ìà8℄ Ìàíòóðîâ, Â.Î. (2004), Èíâàðèàíòû êîíå÷íîãî ïîðÿäêà âèðòóàëüíûõçàöåïëåíèé è ïîëèíîì Äæîíñà-Êàóìàíà, Äîêëàäû ÀÍ, 395 (1), .18-21.[Ìà9℄ Ìàíòóðîâ, Â.Î. (2005), Î äëèííûõ âèðòóàëüíûõ óçëàõ,ÀÍ, 401 (5), . 595-598.Äîêëàäû[Ìà10℄ Ìàíòóðîâ, Â.Î. (2002), Èíâàðèàíòíûé ïîëèíîì äâóõ ïåðåìåííûõäëÿ âèðòóàëüíûõ çàöåïëåíèé, Óñïåõè ìàò.
íàóê, 57, No.5, ññ. 141142.Ëèòåðàòóðà372[Ma11℄ Ìàíòóðîâ, Â.Î. (2005), Êîìïëåêñ Õîâàíîâà äëÿ âèðòóàëüíûõ óçëîâ,Ôóíäàìåíòàëüíàÿ è ïðèêëàäíàÿ ìàòåìàòèêà, ò. 11, 4, ññ. 127-152.[Ma12℄ Ìàíòóðîâ, Â.Î. (2005), Äîêàçàòåëüñòâî ãèïîòåçû Âàñèëüåâà î ïëàíàðíîñòè ñèíãóëÿðíûõ çàöåïëåíèé, Èçâåñòèÿ ÀÍ, ò. 69, 5, ññ. 169178.[Ma13℄ Ìàíòóðîâ, Â.Î. (2003), Êîìáèíàòîðíûå âîïðîñû òåîðèè âèðòóàëüíûõ óçëîâ, Ìàòåìàòè÷åñêèå âîïðîñû êèáåðíåòèêè, ò. 12, ññ.
147-178.[Ma14℄ Ìàíòóðîâ, Â.Î. (2006), Êîìïëåêñ Õîâàíîâà è ìèíèìàëüíûå äèàãðàììû óçëîâ, Äîêëàäû ÀÍ, 406, (3). ññ. 308-311.[Ìà15℄ Ìàíòóðîâ Â.Î. (2007), îìîëîãèè Õîâàíîâà âèðòóàëüíûõ óçëîâ ñïðîèçâîëüíûìè êîýèöèåíòàìè, Èçâåñòèÿ ÀÍ, 71 (5), pp. 111-148.[Man1℄ Manturov, V.O. (2004), Knot Theory, CRC-Press, Boa Raton, 416 pp.[Man2℄ Manturov, V.O. (2003), Multivariable polynomial invariants for virtualknots and links, Journal of Knot Theory and Its Ramiations, 12,(8),pp. 1131-1144.[Man3℄ Manturov, V.O. (2003), Kaumanlike polynomial and urves in 2surfaes, Journal of Knot Theory and Its Ramiations, 12, (8), pp.11451153.[Man4℄ Manturov, V.O. (2005), Vassiliev invariants for virtual links, urves onsurfaes and the Jones-Kauman polynomial, Journal of Knot Theoryand Its Ramiations, 14, (2), pp. 231-242.[Man5℄ Manturov, V.O.
(2004), Long virtual knots and their invariants, Journalof Knot Theory and Its Ramiations, 13 (8), pp.1029-1039.[Man6℄ Manturov, V.O. (2002), On Invariants of Virtual Links,Appliandae Mathematiae, 72 (3), pp. 295309.Ata[Man7℄ Manturov, V.O. (2004), Virtual Knots and Innite-dimensional Liealgebras, Ata Appliandae Mathematiae, 83 (3), pp. 221-233.[Man8℄ Manturov, V.O.
(2005), Flat Hierarhy, Fundamenta188, pp. 147-154.Mathematiae,volËèòåðàòóðà373[Man9℄ Manturov, V.O. (2007), Khovanov Homology for Virtual Links withArbitrary Coeients, Journal of Knot Theory and Its Ramiations, 16(3), pp. 345-377.[KM1℄ Kauman,FundamentaL.H.,Manturov, V.O. (2005),Mathematiae, 188, pp. 103-146.VirtualBiquandles,[KM2℄ Êàóìàí, Ë.Õ., Ìàíòóðîâ, Â.Î. (2006) Âèðòóàëüíûå óçëû è çàöåïëåíèÿ, Òðóäû ìàòåìàòè÷åñêîãî èíñòèòóòà ÀÍ èì.
Â.À.Ñòåêëîâà,ò. 252, N. 1, 114-133.Äðóãèå öèòèðóåìûå ðàáîòû:[Ale1℄ Alexander, J. W. (1923), Topologial invariants of knots and links. Trans.AMS., 20, pp. 257306.[Ale2℄ Alexander, J.W. (1933), A matrix knot invariant.USA, 19, pp. 222275.Pro. Nat. Aad. Si.[Ale3℄ Alexander, J.W. (1923), A lemma on systems of knotted urves,Nat. Aad. Si. USA, 19, pp. 9395.Pro.[AP℄ Asaeda, M., Przytyki, J.
(2004), Khovanov homology: Torsion andThikness, arxiv: math. GT/0402402[APS℄ Asaeda, M., Przytyki, J., Sikora, A. (2004), Categoriation of theKauman braket skein module of I-bundles over surfaes, Algebrai andGeometri Topology, 4, No. 52, pp. 1177-1210.[Arn1℄ Arnold, V.I. (1994), Topologial invariants of plane urves and austis,Univ. Let. Series, 5, AMS Providene, R. I.[Arn2℄ Arnold, V.I. (1994), Plane urves, their invariants, perestroikas andlassiations, in: Singularities and Bifurations, Adv. Soviet Math., 21,AMS, Providene, RI, pp.
33-91.[Art1℄ Artin, E. (1925), Theorie der Zopfe.4, pp. 2772.Abh. Math. Sem. Univ. Hamburg,Ëèòåðàòóðà374[Avd℄ Avdeev, R.S. (2006), On extreme oeients of the JonesKaumanpolynomial for virtual links, J. Knot Theory Ramiations, 15, (7), pp.853-868.[BaMo℄ Bae, Y. and Morton, H.R. (2003) The spread and extreme terms of theJones polynomial, Journal of Knot Theory and Its Ramiations, 12, (3),pp.
359-373.[Bar℄ Bardakov, V.G. (2004) The virutal and universal bradis,Mathematiae, 184, 1-18.Fundamenta[BF℄ Bartholomew, A. and Fenn. R. (2003), Quaternioni Invariants of VirtualKnots and Links, www.maths.sussex.a.uk/Sta/RAF/Maths/Current/Andy/equivalent.ps,[BL℄ Birman, J.S. and Lin, X.S. (1993), Knot polynomials and Vassiliev'sinvariants, Inventiones Mathematiae, 111, pp. 225270.[Big1℄ Bigelow, S. (2001). Braid groups are linear, J.471486.Amer.
Math. So.,14, pp.[Big2℄ Bigelow, S. (2002). Does the Jones polynomial detet the unknot, Journalof Knot Theory and Its Ramiations 11, pp 493505.[Bir2℄ Birman, J.S. (1974), Braids, links and mapping lass groups. Prineton,NJ: Prineton Univ. Press, 1974 (Ann. Math. Stud., 1982).[Bir3℄ Birman, J.S. (1993), New points of view in knot theory,pp. 283-287.Bull. AMS,[BN1℄ BarNatan, D. (1995), On the Vassiliev knot invariants,pp. 423475.Topology,28,34,[BN2℄ BarNatan, D. (2002), On Khovanov's ategoriation of the Jonespolynomial, Algebrai and Geometri Topology, 2(16), pp.
337370.[BN3℄ BarNatan, D. (2004), Khovanov's homology for tangles and obordisms,arXiv:mat.GT/0410495 Geometry and Topology, 9, 1443-1499 (2005).[Bou℄ Bouhet, A. (1994), Cirle graph obstrutions,B, 60, pp. 107-144.J. Combinatorial TheoryËèòåðàòóðà375[BuF℄ Budden, S., Fenn, R. (2004), The Equation [B, (A − 1)(A, B)] = 0 andVirtual Knots and Links, Fundamenta Mathematiae 184, pp.
19-29.[Bur℄ Burau, W. (1936) UberZopfgruppen und gleihzeitig verdrillteVerkettungen, Abh. Math. Sem. Univ. Hamburg, 11, pp. 179186.[BZ℄ Burde, G. and Zieshang, H. (2003),[ÊÔ℄ Êðîóýëë, ., Ôîêñ, . (1967),Knots(Berlin: Walter de Gruyter).Ââåäåíèå â òåîðèþ óçëîâ,(Ì.: Ìèð).[Car℄ Carter, J.S. (1991), Closed urves that never extend to proper maps ofdisks, Pro. AMS, 113 (3), pp.
879-888.[CDBook℄ Chmutov, S. and Duzhin, S., Mostovoy, J. CDBook. Introdution toVassiliev Knot Invariants, http://www.pdmi.ras.ru/ ∼duzhin/ papers/dbook.ps.gz[CDL℄ Chmutov, S.V., Duzhin, S.V. and Lando, S.K. (1994), Vassiliev knotinvariants I − III , Advanes in Soviet Mathematis, 21, pp. 117147.[Che℄ Chekanov, Yu. (2002), Dierential algebras of Legendrian links,Inventiones Mathematiae, 150(3), pp.
441483.[ChK℄ Champanerkar, A., Kofman, I., Spanning trees and Khovanov homology,arxiv: math. GT/0607510[CE1℄ Cairns, G., Elton, D., The planarity problem for signed Gauss words,Journal of Knot Theory and Its Ramiations, 2, No.4. (1993), pp. 359367.[CE2℄ Cairns, G., Elton, D., The planarity problem II, Journaland Its Ramiations, 5,No.2. (1996), pp. 137-144.of Knot Theory[CS℄ J.S.Carter and M. Saito, Diagrammati invariants of knotted urves andsurfaes, (unpublished manusript - 1992).[CKS℄ Carter, J.S., Kamada, S., Saito, M. (2002), Stable equivalene of knots onsurfaes, Journal of Knot Theory and Its Ramiations, 11, pp.
311-322.[CKS2℄ Carter, J.S., Kamada, S., Saito, M. (2004),Springer Verlag).Surfaes in 4-spae,(N.Y:Ëèòåðàòóðà376[Con℄ Conway, J.H, (1970), An enumeration of knots and links and some of theiralgebrai properties, In: Computational Problems in Abstrat Algebra(New York, Pergamon Press), pp. 329358.[Deh1℄ Dehornoy, P. (1995), From large ardinals to braids via distributivealgebra, Journal of Knot Theory and its Ramiations, 4, pp. 3379[Dehn℄ Dehn, M. (1914), Die beiden Kleeblattshlingen,Annalen, 102, ss. 402413.Mathematishe[Dehn2℄ Dehn, M. (1910), Uberdie Topologie des dreidimensionalen Raumes,Mathematishe Annalen, 69, ss. 137168.[DK1℄ Dye, H.A. and Kauman, L.H.
(2004), Virtual knot diagrams andthe Witten-Reshetikhin-Turaev Invariants, arXiv:math. GT/0407407,Journal of Knot Theory and Its Ramiations, Vol. 14, No. 8, pp. 10451075 (2005),[DK2℄ Dye, H.A., Kauman, L.H. (2004), Minimal Surfae Representation ofVirtual Knots and Links, arXiv:math. GT/0401035 v1.[Äðî℄ Äðîáîòóõèíà, Þ.Â.. (1991), Àíàëîã ïîëèíîìà Äæîóíñà-Êàóìàíàäëÿ çàöåïëåíèé â RP 3 è îáîáùåíèå òåîðåìû Êàóìàíà-Ìóðàñóãè,Àëãåáðà è àíàëèç, 2(3), ññ. 613630.[DuK℄ Duzhin, S.V., Karev, M.V.,Dåteting the orientation of long links bynite type invariants, arXiv:math.GT/0507015 v4 21 Jul 2005.[Dye℄ Dye, H.A. (2003), Detetion and Charaterization of Virtual KnotDiagrams, Ph.D. Thesis, University of Illinois at Chiago.[Äûí℄ Äûíêèí, Å.Á. (1947), Î êîýöèåíòàõ â îðìóëå Campbell'àHausdor'à, Äîêëàäû ÀÍ ÑÑÑ, 57 (4), ññ.323326.[EGH℄ Eliashberg, Ya., Givental, A.
and Hofer, H. (2002), An introdution tosympleti eld theory, Geom Funt. Anal., Speial Volume, Part II, pp.560673.Ëèòåðàòóðà377[EH℄ Etnyre, J., Honda, K. (2000), Knots and Contat Geometry, Part I , PartII , arXiv:mat.GT/0006112. Part I : Torus knots and the gure eight knot,Journal of sympleti geometry, (2001), 1, pp, 63-120.[EKT℄ Eliahou, Sh., Kauman, L.H., Thistletwaite, M. (2003). Innite familiesof links with trivial Jones polynomial, Topology, 42, pp. 155169.[F℄Fomenko A. T.