Геометрия и комбинаторика виртуальных узлов (1097523), страница 63
Текст из файла (страница 63)
(1991), The theory of multidimensional integrablehamiltonian systems (with arbitrary many degrees of freedom). Moleulartable of all integrable systems with two degrees of freedom, Adv. Sov.Math, 6, pp. 1-35.[ÔÌ℄ Ôîìåíêî, À.Ò., Ìàòâååâ, Ñ.Â. (1991), Àëãîðèòìè÷åñêèå è êîìïüþòåðíûå ìåòîäû â òðåõìåðíîé òîïîëîãèè, Ì., Èçä. ÌÓ.[ÔÁØ℄ Òîïîëîãè÷åñêèå ìåòîäû â òåîðèè ãàìèëüòîíîâûõ ñèñòåì (1998), ïîäðåä. À.Ò.Ôîìåíêî, À.Â.Áîëñèíîâà, À.À.Øààðåâè÷à., Ì, Ôàêòîðèàë.[FJK℄ Fenn, R., Jordan-Santana, M. and Kauman, L.H.
(2004), Biraks andvirtual links www.maths.sussex.a.uk/Reports/TAGG/TAGG02-01.ps,Topology & Appl., 145, pp. 157-175.[FKM℄ Fenn, R.A, Kauman, L.H, and Manturov, V.O. (2005), VirtualKnots: Unsolved Problems, Fundamenta Mathematiae, Proeedings ofthe Conferene Knots in Poland-2003, 188, pp. 293-323.[FM℄ Flemming, Th., Mellor, B., Virtual Spatial Graphs, arXiv:math.GT/0510158.[FRR℄ Fenn, R.A., Rimanyi, P. and Rourke, C.P.
(1997), The braidpermutation Group, Topology, 36(1), pp. 123135.[FRS1℄ Fenn,R.A., Rourke, C.P., Sanderson, B. (1995), Truns and lassifyingspaes, Applied Categorial Strutures 3 pp. 321356.[FRS2℄ Fenn,R.A., Rourke, C.P., Sanderson, B. (1993), An introdution toSpeies and the Rak Spae Topis in Knot Theory: Kluwer AademiPublishers, pp. 3355Ëèòåðàòóðà378[FT℄ Fuhs, D. and Tabahnikov, S. (1997), Invariants of Legendrian andtransverse knots in the standard ontat spae, Topology, 36, pp. 10251053.[Ga℄ Garoufalidis, S.
(2004), A onjeture on Khovanov's invariants,Fundamenta Mathematiae, 184, pp. 99-101.[Gar℄ Garside, F.A., The braid group and other groups (1969), Quart.Oxford, 20, (78), pp. 235-254.J. Math.[Gau℄ Gauss, C.F. (1877), Zur Mathematishen Theorie der eletrodynamishenWirkungen, Werke Koningl. Gesell. Wiss. Gottingen 5 (1877), s. 605.[GKZ℄ Mo-Lin Ge, L.H. Kauman, Yong Zhang, Virtual Extension ofTemperley-Lieb Algebra, arXiv:math-ph /0610052 v1 22 Ot 2006[GL℄ Gordon., C. MA, and Lueke, J.
(1989), Knots are determined by theiromplements, J. Amer. Math. So., 2 (2), pp. 371415.[Gold℄ Goldman, W. (1986), Invariant funtions on Lie groups and Hamiltonianows of surfae group representations, Inventiones Mathematiae, 85, pp.263-302.[Goryu℄ Goryunov, V. (1998), Vassilive type invariants in Arnold's J + -theoryof plane urves without diret self-tangenies, Topology 37, pp. 603-620.[GPV℄ Goussarov M., Polyak M., and Viro O.(2000), Finite type invariants oflassial and virtual knots, Topology 39, pp. 10451068.[óñ℄ óñàðîâ, Ì.Í.
(1991), Íîâàÿ îðìà ïîëèíîìà Äæîíñà-Êîíâåÿ äëÿîðèåíòèðîâàííûõ çàöåïëåíèé. Çàï. íàó÷íûõ ñåìèíàðîâ ËÎÌÈ, 193,åîìåòðèÿ è òîïîëîãèÿ, 1, ññ. 49.[H℄Hrenein, D., On Filamentations and Virtual Knot Invariant, Thesiswww.math.ui.edu/ ∼dhren/FINALCOPY.ps.[Hak℄ Haken, W. (1961), Theorie der Normalahen,pp. 245375.Ata Mathematiae105,[Hem℄ Hemion, G. (1992), The lassiation of knots and 3dimensional spaes,(Oxford: Oxford Univ. Press).Ëèòåðàòóðà379[HL℄ Hass, J., Lagarias, J.
(2001), The number of Reidemeister moves neededfor unknotting, J. Amer. Math. So., 14 (2), pp. 399-428.[HK℄ Hrenein, D. and Kauman, L.H. (2003), On Filamentations and VirtualKnots, Topology and its Appliations, 134, pp. 2352.[HOMFLY℄ Freyd, P., Yetter, D., Hoste, J., Likorish, W.B.R, Millett, K.C.and Oneanu A. (1985), A new polynomial invariant of knots and links,Bull. Amer. Math. So. 12, pp. 239246.[Hur℄ Hurwitz A (1891).Verzweigungspunkten.UberMath.Riemannshe FlaheAnn., 39, pp. 1-61.mitgegebenen[IKK℄ Ishii, A., Kamada, N., Kamada, S. (2006), The virtual magnetiKauman braket skein module and skein relations for the f-polynomial,available at http://www4.on.ne.jp/ ∼xyz/LvA03.pdf[Ja℄ Jaobsson, M.
(2002), An invariant of link obordisms from Khovanov'shomology theory, arXiv:mat.GT/0206303 v1.[Joh℄ Johannson, K.(1979), Homotopy equivalenes of 3-manifolds withboundaries, Leture Notes in Mathematis, 761, (Berlin: Springer-Verlag).[Jon1℄ Jones, V. F. R. (1985), A polynomial invariant for links via Neumannalgebras, Bull. Amer. Math. So., 129, pp. 103112.[JKS℄ Jaeger, F., Kauman, L.H., and H. Saleur (1994), The ConwayPolynomial in S 3 and Thikened Surfaes: A new DeterminantFormulation, J. Combin.
Theory. Ser. B., 61, pp. 237-259.[Jon2℄ Jones, V. F. R. (1987), Heke algebra representations of braid groupsand link polynomials, Annals of Mathematis, 126, pp. 335388.[Joy℄ Joye D. (1982), A lassifying invariant of knots, the knot quandle,Journal of Pure and Applied Algebra, 23 (1), pp. 3765.[Kad℄ Kadokami, S. (2003), Deteting non-triviality of virtual links, JournalKnot Theory and Its Ramiations, 6, pp. 781-819.of[Kadi℄ Kadison, L.
(1999), New examples of Frobenius extensions, UniversityLeture series, AMS.Ëèòåðàòóðà380[Kam.N1℄ Kamada, N. (2002), On the Jones polynomial of hekerboardolorable virtual knots, Osaka Journal of Mathematis, 39, (2), pp. 325333.[Kam.N2℄ Kamada, N. (2005), A relation of Kauman's f -polynomials ofvirtual links, Topology and Its Appliations, 146-147, pp.123-132.[Kam℄ Kamada, S.
(2000), Braid presentation of virtual knots and welded knots,arXiv:math. GT/0008092 v1, 2000.[Kau1℄ Kauman, L.H. (1987),University Press).On Knots,[Kau2℄ Kauman, L.H. (1991),Sienti).Knots(Annals of Math Studies, PrinetonandPhysis,(Singapore: World[Kau3℄ Kauman, L.H. (1987), State Models and the Jones Polynomial,Topology, 26 (1987), pp.
395407.[Kau4℄ Kauman, L.H. (1983), Combinatoris and knot theory,Mathematis, 20, pp. 181200.Contemporary[Kau5℄ Kauman, L.H. (2003), e-mail to the author, May, 2003.[Kau6℄ Kauman, L.H. (1973), Link manifolds and periodiity,Math. So., 79, pp. 570-573[Kau7℄ Kauman, L. H. (1999), Virtual knot theory,Combinatoris, 20(7), pp. 662690.Bull. Amer.European Journal of[Kau8℄ Kauman, L.H.
(2001), Deteting virtual knots, Atti.Univ. Modena, Supplemento al vol. IL, pp. 241-282.Sem. Math. Fis.,[Kau9℄ Kauman, L.H.., Diagrammati Knot Theory, in preparation.[Kau10℄ L. H. Kauman (2004), A Self-Linking Invariant of Virtual Knots.Fundamenta Mathematiae, vol. 184, pp. 135-158.[Kau1℄ Kauman, L.
H. (1997), Virtual Knots , talks at MSRI Meeting, January1997 and AMS meeting at University of Maryland, College Park, Marh1997.Ëèòåðàòóðà381[Kh℄ Khovanov, M. (1997), A ategoriation of the Jones polynomial,Math. J,101 (3), pp.359-426.Duke[Kh1℄ Khovanov, M. (2002) A funtor-valued invariant of tangles, Algebr.Geom.
Topol. 2, pp. 665741 (eletroni), arXiv:math.QA/0103190.[Kh2℄ Khovanov, M. (2004), Link homology and Frobenius extensions,Arxiv.Math:GT/0411447[Kh3℄ Khovanov, M. (2005), Categoriations of the olored Jones polynomialJournal of Knot Theory and Its Ramiations, 14 (1), pp. 111-130.[KhR1℄ Khovanov, M., Rozansky, L., Matrix Fatorizations and Link Homology,Arxiv.Math:GT/0401268[KhR2℄ Khovanov, M., Rozansky, L.,Matrix Fatorizations and Link HomologyII, Arxiv.Math:GT/0505056[KhR3℄ Khovanov, M., Rozansky, L., Virtual rossings, onvolutionsand a ategoriation of the SO(2N ) Kauman polynomial,Arxiv.Math:GT/0701333[KK℄ Kamada, N.
and Kamada, S. (2000), Abstrat link diagrams and virtualknots, Journal of Knot Theory and Its Ramiations, 9 (1), pp. 93109.[KL℄ Kauman, L.H., Lambropoulou, S. (2004), Virtual braids,Mathematiae, vol. 184, pp. 159-186.Fundamenta[KL2℄ Kauman, L.H., Lambropoulou, S. (2006), Virtual braids and the LMove, J. Knot Theory Ramiations 15, No. 6, 773-811.[KNS℄ Kamada, N., Nakabo, S. and Satoh, S. (2002), A virtualized skeinrelation for Jones polynomial, Illinois Jornal of Mathematis, 46 (2), pp.467-475.[Kon℄ Kontsevih, M. (1993), Vassiliev's knot invariants,16(2) (1993), pp.
137150.Adv. in Soviet Math.,[Kra℄ Krammer, D. (2002), Braid groups are linear, Ann.131156.of Math.,2 (155), pp.Ëèòåðàòóðà382[KR℄ Kauman, L.H. and Radford, D. (2002), Bi-Oriented Quantum Algebrasand a Generalized Alexander Polynomial for Virtual Links, AMSContemp. Math, 318, pp. 113140.[Kup℄ Kuperberg, G. (2002), What is a Virtual Link?, www.arXiv.org, mathGT/0208039, Algebrai and Geometri Topology, 2003, 3, 587-591.[Ëàí℄ Ëàíäî, Ñ.Ê. (2006), J -èíâàðèàíòû îðíàìåíòîâ è îñíàùåííûíå õîðäîâûå äèàãðàììû, Ôóíêöèîíàëüíûé àíàëèç è åãî ïðèëîæåíèÿ, 40 (1),ññ. 1-13.[Lee1℄ Lee, E. S.
(2002) The support of the Khovanov's invariants for alternatingknots, arXiv: math.GT/0201105.[Lee2℄ Lee, E.S. (2003) On Khovanov invariant for alternating links, arXiv:math.GT/0210213.[Lieb℄ Lieberum, J. (2004), Universal Vassiliev invariants of Links in Coveringsof 3-manifolds, Journal of Knot Theory and Its Ramiations, 13 (4), pp.515-556.[LM℄ Lovasz, L., Marx, M., A forbidden substruture haraterization of Gaussodes, Ata Si. Math. (Szeged) 38 (1976), no.
12, 115119, short version:Bull. Amer. Math. So. 82 (1976), no. 1, 121122.[Low℄ Lowrane, A., Heegaard-Floer Homology and Turaev genus, arxiv: math.GT/0709.0720[Mnh℄ Manhon, P.M. (2004), Extreme oeients of the Jones polynomialand the graph theory, Journal of Knot Theory and Its Ramiations,13,N. 2, pp.