Бакалов В.П. Основы теории цепей (3-е издание, 2007).pdf (1095419), страница 89
Текст из файла (страница 89)
Äëÿýòîãî ìîæíî âîñïîëüçîâàòüñÿ îáðàòíûì z-ïðåîáðàçîâàíèåì (19.30).Äðóãîé ñïîñîá çàêëþ÷àåòñÿ â òîì, ÷òîáû ðàçëîæèòü ôóíêöèþ1X(z) â ñòåïåííîé ðÿä ïî ñòåïåíÿì z . Òîãäà êîýôôèöèåíòû ïðè1ñòåïåíÿõ záóäóò, â ñîîòâåòñòâèè ñ ôîðìóëîé (19.29), îòñ÷åòàìèäèñêðåòíîãî ñèãíàëà x(k).Ïðèìåð. Íàéäåì äèñêðåòíûé ñèãíàë x(k), êîòîðîìó ñîîòâåòñòâóåò z-ïðåîáðàçîâàíèå X(z) = 1 / (1 0,5z 1).Âîñïîëüçóåìñÿ ðàçëîæåíèåì ôóíêöèè (1 q) 1 â ðÿä:1 + q + q2 + q3 + ... .Äëÿ çàäàííîãî z-ïðåîáðàçîâàíèÿ q = 0,5z 1, ïîýòîìó çàïèøåì z-ïðåîáðàçîâàíèå â âèäåX ( z ) = 1 + 0,5 z -1 + 0,25 z -2 + 0,125 z -3 + ¼ .Ñðàâíèâàÿ ïîëó÷åííîå âûðàæåíèå ñ îáùåé ôîðìóëîé z-ïðåîáðàçîâàíèÿX(z) =¥å x ( k ) z -k ,k =0ïîëó÷èì ïîñëåäîâàòåëüíîñòüx{k} = {1; 0,5; 0,25; 0,125; ...}.kÎáùèé ÷ëåí ýòîé ïîñëåäîâàòåëüíîñòè x(k) = 0,5 , k 0.Ïðèìåð.
Íàéäåì îòñ÷åòû äèñêðåòíîãî ñèãíàëà ïî åãî z-ïðåîáðàçîâàíèþX(z) =30z 25=.216 z - z - 1 1 - z -1 - 1 z -266Äëÿ ðàçëîæåíèÿ ôóíêöèè X(z) â ñòåïåííîé ðÿä ïî ñòåïåíÿì z 1 âûïîëíèì11æöäåëåíèå ÷èñëà 5 íà ìíîãî÷ëåí ç 1 - z -1 - z -2 ÷ .  ðåçóëüòàòå ïîëó÷èì ÷àñò66èø535 -2íîå 5 + z -1 +z + K . Îòñ÷åòû äèñêðåòíîãî ñèãíàëà ðàâíû636535x ( 0 ) = 5; x ( 1 ) = ; x ( 2 ) =; è ò.ä.636Ïðîöåäóðà äåëåíèÿ çäåñü íå ïðèâåäåíà èç-çà åå ãðîìîçäêîñòè, õîòÿ âûðàæåíèÿ ïîëèíîìîâ, ñòîÿùèõ â ÷èñëèòåëå è çíàìåíàòåëå X(z), íå ñëèøêîì ñëîæíûå.532Áîëåå ýôôåêòèâíûì ñïîñîáîì íàõîæäåíèÿ x(k) ïî èçâåñòíîìó X(z) ÿâëÿåòñÿ ñïîñîá ïîäîáíûé ìåòîäó ðàçëîæåíèÿ íà ïðîñòåéøèå äðîáè â ïðåîáðàçîâàíèÿõ Ëàïëàñà.Ïðèìåð.
Íàéäåì îáùèé ÷ëåí xk äèñêðåòíîãî ñèãíàëà x(k), êîòîðîìó ñîîòâåòñòâóåò z-èçîáðàæåíèå, çàäàííîå â ïðåäûäóùåì ïðèìåðåX(z) =30 z 25=.26 z - z - 1 1 - 1 z -1 - 1 z -266Ôóíêöèÿ X(z) èìååò ïîëþñû â òî÷êàõ z1 = 1 / 2 è z2 = 1 / 3, èëè, ÷òî òî11æå, â òî÷êàõ z1 = 2 è z2 = 3.Ðàçëîæèì X(z) íà ñóììó ïðîñòûõ äðîáåé:X(z) =532.=+1 -11 -11 -1 ö æ1 -1 öæ1+ zç1 - z ÷ç1 + z ÷ 1 - z23èøèø23(19.35)Êîýôôèöèåíòû â ÷èñëèòåëÿõ êàæäîé äðîáè âû÷èñëÿþòñÿ òàê æå, êàê ïðè ðàçëîæåíèè âõîäíîãî ñîïðîòèâëåíèÿ z(p) ðåàêòèâíûõ äâóõïîëþñíèêîâ ïðè ñèíòåçå èõ ïî ñõåìå Ôîñòåðà:1æö5 ç 1 - z -1 ÷èø21 -1 ö æ1 -1 öæç1 - z ÷ ç1 + z ÷èøèø231æö5 ç 1 + z -1 ÷èø31 -1 ö æ1 -1 öæç1 - z ÷ ç1 + z ÷èøèø23= 3;z -1 = 2= 2.z -1 = -3Ïîäîáíî òîìó, êàê ôîðìóëà (19.34) ïðåäñòàâëÿåò ñóììó ðÿäà (19.33), ïðîñòûå äðîáè â (19.17) ÿâëÿþòñÿ ñóììàìè ðÿäîâ¥kæ1ö3 å ç ÷ z -kk =0 è 2 øèk¥æ 1ö2 å ç - ÷ z -k .3øk=0 èÏîñêîëüêó z-ïðåîáðàçîâàíèå ýòî ëèíåéíàÿ îïåðàöèÿ, òî ïîñëåäîâàòåëüíîñòü x(k) ñîñòîèò èç ñóììû äâóõ ïîñëåäîâàòåëüíîñòåé:kkæ1öæ 1öx (k ) = 3ç ÷ + 2ç - ÷ , k 0 .è2øè 3øÏîñëå âûïîëíåíèÿ îïåðàöèè âîçâåäåíèÿ â ñòåïåíü k ïîëó÷èì îòñ÷åòû äèñêðåòíîãî ñèãíàëà535x ( 0 ) = 5; x ( 1 ) = ; x ( 2 ) =;636è ò.ä.Ñâîéñòâà z-ïðåîáðàçîâàíèÿ.
Òàê æå êàê è äëÿ ïðåîáðàçîâàíèéËàïëàñà è Ôóðüå, ñóùåñòâóþò òåîðåìû äëÿ z-ïðåîáðàçîâàíèÿ. Ïðèâåäåì íàèáîëåå âàæíûå òåîðåìû îäíîñòîðîííåãî z-ïðåîáðàçîâàíèÿ.533Òåîðåìà ëèíåéíîñòè (ñóïåðïîçèöèè). Ñóììå äèñêðåòíûõ ñèãíàëîâ ñîîòâåòñòâóåò ñóììà èõ z-èçîáðàæåíèé. Åñëè äèñêðåòíûìñèãíàëàì x(k) è y(k) ñîîòâåòñòâóþò z-èçîáðàæåíèÿ X(z) è Y(z), òîa x ( k ) + b y ( k ) a X ( z ) + bY ( z ) ,ãäå a è b íåêîòîðûå ÷èñëà.Äîêàçàòåëüñòâî òåîðåìû âûïîëíèòå ñàìîñòîÿòåëüíî, èñïîëüçóÿâûðàæåíèå (19.29) äëÿ ðàñ÷åòà z-èçîáðàæåíèÿ äèñêðåòíîãî ñèãíàëà.Òåîðåìà îïåðåæàþùåãî ñäâèãà.
Åñëè äèñêðåòíîìó ñèãíàëó x(k)ñîîòâåòñòâóåò îäíîñòîðîííåå z-ïðåîáðàçîâàíèå X(z), òî ñèãíàëó,ñäâèíóòîìó íà îäèí èíòåðâàë äèñêðåòèçàöèè, x(k + 1) ñîîòâåòñòâóåò z-ïðåîáðàçîâàíèå z(X(z) x(0)).Ìàòåìàòè÷åñêàÿ çàïèñü òåîðåìû èìååò âèäx ( k + 1 ) z ( X ( z ) -x ( 0 ) ) ,×òîáû äîêàçàòü òåîðåìó, âîñïîëüçóåìñÿ îñíîâíûì âûðàæåíèåì(19.29) äëÿ ðàñ÷åòà z-ïðåîáðàçîâàíèÿ äèñêðåòíûõ ñèãíàëîâ x(k) èx(k + 1), à òàêæå ãðàôèêàìè, ïðèâåäåííûìè íà ðèñ.
19.22.X(z) =X¢ ( z ) =¥åk =0¥åk =0x ( k ) z -k = x ( 0 ) + x ( 1 ) z -1 + x ( 2 ) z -2 + K;x ( k + 1 ) z -k = x ( 1 ) + x ( 2 ) z -1 + x ( 3 ) z -2 + K .Ñðàâíèâàÿ X(z) è X ¢(z), ïîëó÷àåì X ¢(z) = z(X(z) x(0)), ÷òî èòðåáîâàëîñü äîêàçàòü.Î÷åâèäíî, ÷òî òåîðåìà îïåðåæàþùåãî ñäâèãà âûïîëíÿåò òó æåñàìóþ ðîëü, ÷òî è òåîðåìà äèôôåðåíöèðîâàíèÿ äëÿ ïðåîáðàçîâàíèé Ëàïëàñà.Òåîðåìà çàäåðæêè. Ìàòåìàòè÷åñêàÿ çàïèñü òåîðåìû èìååò âèäx ( k - N ) u ( k - N ) z -N × X ( z ) , N 0 . òåîðåìå çàäåðæêè u(k) ýòî äèñêðåòíûå îòñ÷åòû ôóíêöèèåäèíè÷íîãî ñêà÷êà (ðèñ. 19.23)u (k) ={1,0,x ( k)0k 0,k < 0,x (k + 1)123 45k_Ðèñ.
19.225341 012 34kX (z ) =1_2_1 012341u (k _ N )1- z-15kX (z ) =1_2_1 01~~u ( k)N _ 1 N N +1Ðèñ. 19.23-z N-11- zkÐèñ. 19.24à u(k N) ýòî äèñêðåòíûå îòñ÷åò ôóíêöèè u(k), çàäåðæàííîéíà N èíòåðâàëîâ äèñêðåòèçàöèè (ðèñ. 19.24).u (k - N )={0,1,k < N,k N.Äîêàçàòåëüñòâî âûòåêàåò èç îñíîâíîãî âûðàæåíèÿ (19.29) äëÿ zïðåîáðàçîâàíèÿ.¥()å x ( k - N ) u ( k - N ) z -N = x ( 0 ) z -N + x (1) z - N+1( N +2 )+ x ( 2) z -k=0+K == z - N ( x ( 0 ) + x ( 1) z -1 + x ( 2 ) z -2 + K) == z -N × X ( z ) .Ïðè äîêàçàòåëüñòâå ó÷òåíî, ÷òî åäèíè÷íàÿ ñòóïåí÷àòàÿ ôóíêöèÿîáðàùàåòñÿ â íóëü ïðè îòðèöàòåëüíûõ çíà÷åíèÿõ åå àðãóìåíòà, ò.å.ïðè n < N. Èç òåîðåìû çàäåðæêè â ÷àñòíîñòè ñëåäóåò, ÷òî ñäâèãäèñêðåòíîãî ñèãíàëà íà îäèí èíòåðâàë äèñêðåòèçàöèè T ñîîòâåòñò1âóåò óìíîæåíèþ z-ïðåîáðàçîâàíèÿ íà îïåðàòîð z , ïîýòîìó ÷àñòî1z íàçûâàþò îïåðàòîðîì åäèíè÷íîé çàäåðæêè â z-îáëàñòè.kÒåîðåìà óìíîæåíèÿ íà a .
Ìàòåìàòè÷åñêàÿ çàïèñü òåîðåìûèìååò âèäa k x ( k ) X ( a -1z ) .Òåîðåìà óìíîæåíèÿ íà kdX ( z ).dzkÒåîðåìû óìíîæåíèÿ äèñêðåòíîãî ñèãíàëà x(k) íà a è íà kìîæíî òàêæå äîêàçàòü, èñïîëüçóÿ ôîðìóëó (19.29). Ïðåäëàãàåìïðîäåëàòü ýòî ñàìîñòîÿòåëüíî.Òåîðåìà ñâåðòêè. Ñâåðòêå äèñêðåòíûõ ñèãíàëîâ x(k) è h(k)ñîîòâåòñòâóåò ïðîèçâåäåíèå èõ z-ïðåîáðàçîâàíèék × x ( k ) -zx (k ) *h (k )=¥åk =0x (k) × h(m - k) =¥å h(k) × x (m - k) X ( z) × H(z).k =0Ýòó òåîðåìó ìû ïðèâîäèì çäåñü áåç äîêàçàòåëüñòâà. Ïðè íåîáõîäèìîñòè ñ íèì ìîæíî ïîçíàêîìèòüñÿ â ñïåöèàëüíîé ëèòåðàòóðå.535Ïðèìåð. Íàéäåì z-ïðåîáðàçîâàíèå ôóíêöèè åäèíè÷íîãî îòñ÷åòà, çàäåðæàííîé íà N èíòåðâàëîâ äèñêðåòèçàöèè.Íàéäåì z-ïðåîáðàçîâàíèå äèñêðåòíîãî d-èìïóëüñà d(k) (ðèñ.
19.4), èñïîëüçóÿ âûðàæåíèå (19.29)Xd ( z ) =¥å d ( k ) z -k= 1.k=0Èñïîëüçóÿ òåîðåìó çàäåðæêè, íàéäåì z-èçîáðàæåíèå ñèãíàëà d(k N)X ( z ) = z - N × Xd ( z ) = z - N .Íà ðèñóíêå 19.4 ïðèâåäåí òàêæå ãðàôèê çàäåðæàííîé ôóíêöèè åäèíè÷íîãî îòñ÷åòà äëÿ ÷àñòíîãî ñëó÷àÿ N = 2.Ïðèìåð. Íàéäåì z-ïðåîáðàçîâàíèå ôóíêöèèx ( k ) = ak-Nu ( k - N ) . îäíîì èç ïðèìåðîâ ìû óæå íàõîäèëè, ÷òî z-ïðåîáðàçîâàíèå ñèãíàëà aèìååò âèä (19.34) X(z) = 1 / (1 az 1).Èñïîëüçóÿ òåîðåìó çàäåðæêè, ïîëó÷àåìak-Nu ( k - N ) kz -N.1 - a z -1Ïðè a = 1 èìååì:u(k - N ) z -N.1 - z -1Ãðàôèêè äèñêðåòíûõ ñèãíàëîâ u(k N) è a k Nu(k N) ïðèâåäåíû íàðèñ.
19.24 è 19.25.Ïðèìåð. Íàéäåì z-ïðåîáðàçîâàíèå äèñêðåòíîé ïîñëåäîâàòåëüíîñòè x(k) =k= ka , k 0.kÏîñêîëüêó z-èçîáðàæåíèå ïîñëåäîâàòåëüíîñòè a èçâåñòíî (19.16), òî, èñïîëüçóÿ òåîðåìó óìíîæåíèÿ íà k, ïîëó÷èìX ( z ) = -zd æ1a z -1ö.=dz èç 1 - az -1 ÷ø ( 1 - az -1 ) 2Ïðèìåð. Íàéäåì z-ïðåîáðàçîâàíèå äèñêðåòíîé ïîñëåäîâàòåëüíîñòè èç Nîòñ÷åòîâ åäèíè÷íîé àìïëèòóäû (ðèñ. 19.26)ak_Nu (k _ N )X (z ) =1_2_1 01,0,0 k < N,k N.-N1 az1 N _ 1 N N +1Ðèñ. 19.25536z{x ( k)-11k_2_1 012~~x (k) =N _ 1 N N +1 kÐèñ.
19.26Ñèãíàë x(k) ìîæíî ïðåäñòàâèòü êàê ðàçíîñòü äâóõ ñèãíàëîâx (k) = u(k) - u(k - N ).Èç òåîðåì ëèíåéíîñòè è çàäåðæêè ëåãêî ïîëó÷èòü z-ïðåîáðàçîâàíèåX(z) =1 - z -N,1 - z -1÷òî ñîâïàäàåò ñ ôîðìóëîé äëÿ ÷àñòè÷íîé ñóììû ãåîìåòðè÷åñêîé ïðîãðåññèèX(z) =¥N -1k =0k =0å x ( k ) z -k =å z -k .Ïðèìåð. Âû÷èñëèì z-ïðåîáðàçîâàíèå ñâåðòêè äèñêðåòíûõ ñèãíàëîâ x{k} == {1; 1; 1; 0; 0; 0; ...} è y{k} = {0; 0; 1; 1; 0; 0; ...}.Íàéäåì z-ïðåîáðàçîâàíèå ñèãíàëà x(k), èñïîëüçóÿ ôîðìóëó (19.29)X(z) =¥å x ( k ) z -k=k =0= 1 + z -1 + z -2.Íàéäåì z-ïðåîáðàçîâàíèå ñèãíàëà y(k)Y(z) =¥å y ( k ) z -k= z -2 + z -3 .k =0Âû÷èñëèì z-ïðåîáðàçîâàíèå ñâåðòêè ñèãíàëîâ x(k) è y(k), èñïîëüçóÿ òåîðåìó ñâåðòêèx ( n ) * y ( n ) X ( z ) × Y ( z ) = ( 1 + z -1 + z -2 ) ( z -2 + z -3 ) == z -2 + 2z -3 + 2z -4 + z -5. òàáë.
19.1 äàíà ñâîäêà z-ïðåîáðàçîâàíèé íàèáîëåå ÷àñòî âñòðå÷àþùèõñÿ äèñêðåòíûõ ïîñëåäîâàòåëüíîñòåé. Ýòè òàáëè÷íûå ñâåäåíèÿòàêæå ìîãóò áûòü èñïîëüçîâàíû äëÿ ðàñ÷åòà z-ïðåîáðàçîâàíèé ñèãíàëîâ è ïåðåõîäà îò z-ïðåîáðàçîâàíèé ê äèñêðåòíûì ñèãíàëàì.Ïðèìåð. Íàéäåì îáùèé ÷ëåí äèñêðåòíîãî ñèãíàëà x(k), êîòîðîìó ñîîòâåòñòâóåò z-èçîáðàæåíèåX(z) =11 - z -1 - z -2.1 -1 1 -21- z - z66Ðàçëîæåíèå ôóíêöèè X(z) íà ïðîñòûå äðîáè ïðèâîäèò ê âûðàæåíèþX(z) = 6 +311 - z -12+2.1 -11+ z3Èñïîëüçóÿ òåîðåìó ëèíåéíîñòè è íàõîäÿ â òàáëèöå 19.1 äèñêðåòíûå ñèãíàëû, ñîîòâåòñòâóþùèå êàæäîìó èç ñëàãàåìûõ â âûðàæåíèè X(z), ïîëó÷àåìk = 0,ì11,kkx ( k ) = 6d ( k ) + 3 ( 1 2 ) + 2 ( - 1 3 ) = íkkî 3 ( 1 2 ) + 2 ( - 1 3 ) ,k > 0.537Òàáë. 19.1 Êðàòêàÿ òàáëèöà îäíîñòîðîííèõ z-ïðåîáðàçîâàíèéÄèñêðåòíûé ñèãíàëx(k), k 0{1, k = 0x (k) = d(k) =0, k ¹ 0z-ïðåîáðàçîâàíèåX(z) =¥å x ( k ) z -kk =0X(z) = 1{X(z) =z -N1 - z -1x ( k ) = akX(z) =11 - a z -1x (k) = AX(z) =11 - z -1x (k) = kX(z) =x (k) = u(k - N ) =x ( k ) = ka1, k N 00, k < NX(z) =kz -1( 1 - z -1 ) 2az -1( 1 - az -1 )2x ( k ) = a cos kqX(z) =1 - a cos q z -11 - 2 a cos q z -1 + a 2 z -2x ( k ) = a k sin kqX(z) =a sin q z -11 - 2 a cos q z -1 + a 2 z -2ì jk 2p f T , k 0x ( k ) = íek<0î 0,X(z) =k11- ej 2p f T× z -1Ïî ýòîé ôîðìóëå ëåãêî ïîäñ÷èòàòü çíà÷åíèå x(k)äëÿ ëþáîãî k.
Àíàëîãè÷íûìîáðàçîì, ðàçëîæåíèåX(z) =1 + z -1 + z -23= - z -1 - 2 +-11- z1 - z -1ïðèâîäèò ê ïîñëåäîâàòåëüíîñòèì1, k = 0,ïx ( k ) = - d ( k - 1 ) - 2d ( k ) + 3 = í 2, k = 1,ïî 3, k > 1.19.4. Äèñêðåòíûå öåïèÄèñêðåòíàÿ ñâåðòêà.  ïðåäûäóùèõ ðàçäåëàõ ýòîé ãëàâû áàëàóñòàíîâëåíà îïðåäåëåííàÿ àíàëîãèÿ ìåæäó ñîîòíîøåíèÿìè, ñóùåñòâóþùèìè äëÿ àíàëîãîâûõ è äèñêðåòíûõ ñèãíàëîâ. Ïîäîáíàÿ àíàëîãèÿ ñóùåñòâóåò è ìåæäó ìåòîäàìè àíàëèçà è ñèíòåçà àíàëîãîâûõ èäèñêðåòíûõ öåïåé.538x {k }y {k }Ïîä äèñêðåòíîé öåïüþ ïîíèìàþò ëþáîåh {k }óñòðîéñòâî, êîòîðîå ïðåîáðàçóåò îäíó ïîñëåäîâàòåëüíîñòü x{ k } â äðóãóþ y{ k } (ðèñ.Ðèñ. 19.2719.27).Ëèíåéíîé äèñêðåòíîé öåïüþ íàçûâàþò öåïü,ïîä÷èíÿþùóþñÿ ïðèíöèïó ñóïåðïîçèöèè.Ñâÿçü ìåæäó âõîäíûì äèñêðåòíûì ñèãíàëîì x{ k } (âîçäåéñòâèåì) è âûõîäíûì ñèãíàëîì y{ k } (îòñ÷åòîì) îïðåäåëÿåòñÿ äèñêðåòíîé ñâåðòêîé (ñðàâíè ñ (8.12)):y(n) =¥å¥x (k)h(n - k) =k =-¥åh ( k ) x ( n - k ),(19.36)k =-¥ãäå h(k) èìïóëüñíàÿ õàðàêòåðèñòèêà äèñêðåòíîé öåïè.
Îíà îïðåäåëÿåòñÿ êàê îòêëèê äèñêðåòíîé öåïè íà âîçäåéñòâèå â âèäå åäèíè÷íîãî èìïóëüñà (d-ôóíêöèÿ, ðèñ. 19.4).Èíîãäà ñâåðòêó (19.36) çàïèñûâàþò ñèìâîëè÷åñêè: y(k) = x(k) ** h(k) (ñì. òåîðåìó ñâåðòêè, § 19.3).Ëèíåéíàÿ äèñêðåòíàÿ öåïü, áóäåò óñòîé÷èâà, åñëè âûïîëíÿåòñÿóñëîâèå¥åh(k)2< ¥.(19.37)k =-¥Ïðèìåð. Ðàññ÷èòàåì çíà÷åíèÿ âûõîäíîé ïîñëåäîâàòåëüíîñòè y{ k } öåïè,èìåþùåé äèñêðåòíóþ èìïóëüñíóþ õàðàêòåðèñòèêó h{k} = {1; 1; 2}, åñëèâõîäíàÿ ïîñëåäîâàòåëüíîñòü èìååò âèä x{ k } = {2; 1; 2: 1}.
Ãðàôèêè x(k) èh(k) ïðèâåäåíû íà ðèñ. 19.28.Ïîëüçóÿñü ôîðìóëîé (19.36), ðàññ÷èòàåì çíà÷åíèÿ âûõîäíîé ïîñëåäîâàòåëüíîñòè y(k)y ( 0 ) = h ( 0 ) × x ( 0 ) = ( -1 ) × ( -2 ) = 2,y ( 1 ) = h ( 0 ) × x ( 1 ) + h ( 1 ) × x ( 0 ) = ( -1 ) × 1 + 1 × ( -2 ) = -3,× × × × × × × × × × × × × × × × × × × × × × × × × × × ×y ( 4 ) = h ( 0 ) × x ( 4 ) + h (1) × x ( 3 ) + h ( 2 ) × x ( 2 ) + h ( 3 ) × x (1) + h ( 4 ) × x ( 0 ) == ( -1 ) × 0 + 1 × ( -1 ) + 2 × 2 + 0 × 1 + 0 × ( -2 ) = 3,× × × × × × × × × × × × × × × × × × × × × × × × × × × ×Ãðàôèê äèñêðåòíîãî ñèãíàëà y(k) ïðèâåäåí íà ðèñ.