Главная » Просмотр файлов » Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2-е издание, 2004)

Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2-е издание, 2004) (1092039), страница 36

Файл №1092039 Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2-е издание, 2004) (Васин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2-е издание, 2004)) 36 страницаВасин В.И. Информационные технологии в радиотехнических системах. Под ред. И.Б.Федорова (2-е издание, 2004) (1092039) страница 362018-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 36)

Разрешающеи способностью принято называть способность приборов различать очень близкие в пространстве, по времени и по физическим свойствам обьекты или процессы. Разрешающая способность — одна из важнейших характеристик радиолокационных и радионавигационных систем, радиотелескопов, систем радиотехнической разведки, аппаратуры разведки полезных ископаемых, медицинской диагностики и терапии, систем передачи информации и др.

Повышение ршрешающей способности — важное напрасление обесиечени» помехозащищеиности радиотехнических систем ~3! — 36]. Количественную меру разрешающей способности целесообразно связать с возможностью разделении сигналов на выходе оптимального (согласованного) приемника. Очевидно, чем меньше протяженность выходного сигнала приемника по какому-либо параметру разрешения а, тем выше разрешакхцая способность радиотехнической системы.

За количественную меру разрешающей способности обычно принимают величину Ьа, при кото- 200 4 ! П с ршргжщ«ш я рой огибающие выходных сигнюав приеыннка пересекаются па уровнс Ьс 0,5 от их максимального значения Дл» сигналов, отличающихся только зна~ением параметра а, величина Лп совпадает с шириной огибающей выходного сигнала на уровне 0,5. В камсгве примера рассмотрим разрешающую способность прсстейшсго ичпузмсного ралис.юкатара, измеряющего зрн коорлинаты лоцируе- Рис.

4.1. Пояснение разрешающего иыхсбьекгов.дальносгьг,азимут!)и об с ь н разрешаюпгеп способности угол места я цели Разрмпэюпзую способ сс о координатам харакюри. зуют злечснтарным объомом. Размеры зикою элементарного обьема: Ьз по дальности, ЬВ в азимущльной плоскости и Ля в угломестной плоскости (рис 4 !), устанавливают так, по наличие цели а любым соседнем объеме практически не ухушлаег показателей качеспщ !эффективности) обнаружения и измерения координ гел, отора расптыюжена в ценгре выделенного объема.

Опредеаениый таким обрюом щеменгарный объем нюывают Разренюгмыы обьеман !при импульсном облучении цши — и у по»н гюьежш). Р ир шсющсл слособносшь ло дптьносшн характеризуется минимальным расстоянием Л. между лвумя расположенными в одном злемезпе рюрешения по >г.ювыи координатам гочечнымн целями, при кагором одна цель не ммншт обнаруживать вторую цеть и измерять се координаты.

Чем меньше Лг, тем лучше разрешающая способность. Пусть отрюкенные ог целей прямоугольные радиоимпульсы без анугриимпульсной модуляции сдвинуты по времени на 2 20 0!=!„— г, = — (г — г)= —, — т где г, -- времена запазлыванив сигналов, отраженных ат первой и второй целей соответственно, гт - г, =Лг — расстояние межлу мими целями; с— скорость саста. На рис. 42 приведены огибающие выходных импульсов, соответствующие неискаженному приечу прямоугольных радионмпульсов (рис 4 2, а) и оптимальному 0согзасованнаиу) приему при отсутствии помех !рис. 4,2, б). Величина минимального интервала Лг определяется возможнос~ью раздельного набзюдения снежных импульсов. В рассматриваемом случае в качестш условной .меры разршлаюнтен слособносш ло кремгни запаздыва- 20! 4.

Рпзргшеияг сияя мов иц! 0.5 е я Рнс. 4.2. Огибающие отраженных ралиоимлульсов от двух бантко расположенных целей прн зондировании прямоугольными радноимпульсами длительност ью т„без внутриимпульсной модуляции. а — иеяскаяс яыя прием, 6 — оп ямяяьямв )согласованы.

В) прием пия принимают значение дг = т„, нрн котором максимуму огибающей сигнала (см. рис. 42, б). отраженного от одной цели, соответствует нулевое значение огибающей ог другой цели Соотвеютвенно, мерой разрешающей стггобноспш по дцтьностн называют величину ст„ *г гап (4.!) Разрещаюн)ия способность по уялпяым координишан обычно определлется шириной луча, которую принято отсчитывать по уровню половинной мощности диаграммы налравлонности антенны Чем острее луч, тем выше разрешающая способнооть по угловым координатам и тем подробнее сведения о целях в секторе наблюдения. Введенные таким образам количественные меры разрешающей способности характеризуют возможности разрешения объектов прн согласованной обработке принимаемых сигналов, интенсивность которых одного порядка, а отношение сигнал — шум достаточно велико.

Реальная разрешающая способность при согласованной обработке хуже, чем приведенные выше количественные меры. Снижение разрсшшощей способности в общем случае зависит ог искажения формы обрабатываемых сигналов в приемном тракте и индикаторе, от дискретности съема информации и т. д Максимально возможная )потенциальная) разрешающая способность достигается при оптиматьной (в смысле статистического разрешения многих сигналов) обработке. Потенциальная разрешающая способность зависит не только ог формы выходного сигнала, но и от отношения сигнал — шум. !1ри увеличении отнопзсния сигнал — шум потенциальная разрешающая способность возрастает )28, 33, 34). Разрешающую способность Лп по дальности (и по другим параметрам) не следует пугать с точностью измерения дальности (и, соответственно, других параметров).

Потенциальная точность измерения )при отсутствии 202 других источников ошибок> определяется сьзепзснисм по времени пика сигм а на выхолс системы оптгзмщзыюй обработки из-за действия шумов. Поскольку зто смщцение менынс длительности импульса ошибка изморе и» параметра сигнала мсныпс сош в гсгвуюшей мары разрешающей способности Лани Отметим также, по рассмпгреннан мера разрецзаюшей способности по дальности, определяемая формулои (4 !), справедлива только дл» радиотехнических сисим, использующих простые рапиоимпульсы (без внугриимпульсной модуляции) 4.2.

Функция рассогласования (меоирелеленности) в теории разрешении !!Ри схюзосоеая ои обработле сиглаюя рарешшошую способность ралиотехническик (радиолокационных, ралиоиавиглпионных и лр) систем зшракшризуег тпк называемая фт гиы рос гыюс зпягл, коп ртю часто называют глюке фз я ей е лрепе ел огмя (неоднозначности) или пвлокор(гегызззголло«фу явлен 4.2.1. Общие сведен и» о функции расспгласоввния Ргш олокационныс и радионавигационные кот«реипщ|е сигналы характеризуются наупиещраин. в общем случае векторными временем запаздывания, соо~ветствующим дшьиости, доплеровской часготой, соотвегствующси раливпьной скгзросзи пели; высшими произяогзными по времени запаздывании; угловыми координатами и их производными, поляризапионными параметрам, арамеграми, связаинымн с особенносзнми распространения ралиоволн в среде Сопокупныи векторный параметр сигналя п, часю рассогюсоеан (отличае~си) по отношению к ожидчаемому и что проявляюся нри обнаружении и лежит в ооноис рюрыпения сипылов и изм рсния их параметров (3 !.

33 — 35) Расс л ова ис п р ь р и, ва от по модулю сигнала )7(п,, п), '= зу(ао а) и» выходе устройства оптимвяьной (согласованной) обработки при отсутствии помех. Ус~ройство обработки гюлагают оптимизированным для ожи,ыемого сигнала Х(т,а) на фоне нскоррелированной сшннонарной помехи с оди а оной спекгряльнои плотное ~ю мощности в к»- папах приема. Определенную таким образом функцию дз(п„п) называют фуняя ей рогсошшгеояяя Обычно использущся норм роепляпя фуякяия Р ссог псоапния 203 4.

Разрешение скгнляок (4.2) В знаменатель формулы (4 2) входят значения функций зу(а,, а,) и цз(а, а), в общем случае развнчающнеся между собой. Здесь зу(ам а)= )г Х'(г,а,)Х*(г,а)дг, (4.3) где т — знак транспонированив. Каждое значение р характеризует нормированное напряжение на выходе устройства озцимальной обработки прл рассогласовании параметров а, и а.

Для случая согласования а, =а имеем р =1. При выполнении условия Х(г,а) =Х(г,а,р)Х(г,а, ), гле вектор а,„ включает времснныс параметры сигнала, а вектор а — угловые (пространственные) и поляризациоиные, обработка рахлслястся па еретеллую (еретячистотную) и углополяризоциолную (лрострллстеелло-лоляризлционл)ю). Разделение обработки при плоском фронте волны имеет место, если залам лывание комплексной огибающей на совокупном раскрывс антенной системы много меньше 1/Лу',, где Л('„— полоса частот сигнача.

Нормированная функция рассогласования сводится к произведению временной и углопояяризационной нормированных функций рассогласования: р(а,, а) = р„„(а„а)р (а„а). (4.4) Временная (времячастотная) функция рассогласования учитывает рассо1 ласованис только по временным (времячастотным) параметрам и определяется скалярной функцией времени Х (г, а): ) Х(г,а,)Х (г,а)дз рт(а„а) = (4.5) Углополяризационпая функция рассогласования определяется нс зависящим от времени вектором Х(а)=1Хз(а)~, учитывающим зависимость ожидаемых колебаний от номера 1 канала приема, 1 = 1, 2, „., М.

Согласно формулам (4.2) и (4.Э) и правилу скалярного умножения векторов, получаем 204 42 Фу квирю ла (ю р д лоси»)е р Л р ехю )м ~~Х,(и,)Хз (и) р „(а„н)= — '= —— пи Г 'у (Х,(а,)) у )Х,(а)) (4 6) Разновидностью фувкпий рассогласования(4.5) и (4.6) являютс» «смене»оные фую:или рпсссюнкивиння р(а„а). Они описываются формулами (4 5) и (4 6). но без знаков чодуля в числителях, 4.2,2. Время-часта ми ю функиня рассоглвсавиннв Пренебрегая деформ»лией комплексной огибающей (Г(г) сипюлв, обусловленной движением цели, выражение камплекснои амплитуды ожидаемого сигнаал можно представить в виде Х(г,н) =(7(г -т,)с ~ (4.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее