Электропроводящие полимерные композиты с повышенным положительным температурным коэффициентом электрического сопротивления (1091407), страница 18
Текст из файла (страница 18)
Mater. Eng. 2006. Vol. 291. P. 690–696.15. Wang J., Guo W., Cheng S., Zhang Z. Structure and Applications of CB/Crystal Fluoride ResinAlloy in Self-Regulated Heating Cables // J. Appl. Polym. Sci. 2003. Vol. 88. P. 2664–2669.16. Jong Y.S., Han S.H., Park E.S. Effects of Thermal Aging on Morphology, Resistivity, and ThermalProperties of Extruded High-Density Polyethylene/Carbon Black Heating Elements // Polym. Comp.2011. Vol. 32(7). P.
1049-1061.9217. Lee G.J., Han M.G., Chung S.Ch., Suh K.D., Im S.S. Effect of crosslinking on the positivetemperature coefficient stability of carbon black-filled HDPE/ethylene-ethyalacrylate copolymer blendsystem // Polym. Eng. Sci. 2002. Vol. 42(8). P. 1740-1747.18. Łukasika A., Sibińskib M., Walczak S. Relaxation of stresses in polystyrene–carbonmicrocomposite resistive layers // Mater.
Sci. Eng. B. 2012. Vol. 177(15). P. 1331–1335.19. Hiroshi K. Polymer solid electrolyte fuel cell electrode and joint of same with polymer solidelectrolyte: пат. JP07296818 Япония. заявл. 22.04.1994; опубл. 10.11.1995.20. Easter M.R. Improved semiconducting composition: пат. заяв. US2011215278 США. заявл.05.05.2010; опубл. 08.09.2011.21. Tong X.C. Advanced materials and design for electromagnetic interference shielding. Boca Raton:CRC Press, 2009. 324 p.22. Zhang W., Dehghani-Sanij A. A., Blackburn. R. S. Carbon based conductive polymer composites// J. Mater.
Sci. 2007. Vol. 42. P. 3408-3418.23. Fang Y., Zhao J., Zha J.W., Wang D.R., Dang Z.M. Improved stability of volume resistivity incarbon black/ethylene-vinyl acetate copolymer composites by employing multi-walled carbonnanotubes as second filler // Polymer. 2012. Vol. 53(21). P. 4871-4878.24. Norman R. H. Conductive rubbers and plastics.
Amsterdam.: Elsevier Publishing Company Ltd,1970. 277 p.25. Lin X., Liu Q., Gong Q. Polymer-matrix positive temperature coefficient thermistor compositematerial and preparation method thereof: пат. CN101633788 Китай. заявл. 22.07.2008; опубл.27.01.2010.26. Tanaka H., Morimoto K.
PTC material and method for producing same, and circuit protection partusing such PTC material and method for manufacturing same: пат. заяв. US2006049385 США. заявл.25.04.2005; опубл. 09.03.2006.27. Rahaman M., Chaki T.K., Khastgir D. Control of the temperature coefficient of the DC resistivityin polymer-based composites // J.
Mater. Sci. 2013. Vol. 48(21). P. 7466-7475.28. Ma Y.C, Tsai T.C., Chen K.H. Conductive composition exhibiting PTC behavior and over-currentprotection device using the same: пат. заяв. US20060108566 США. заявл. 04.11.2005; опубл.25.05.2006.29. Wang S.C., Yang E.T. Over-current protection device: пат. заяв. US2006089448 США. заявл.27.09.2005; опубл. 27.04.2006.30.
Jeong M.W. Composition materials for current control heating resistor having elasticity andmethod for manufacturing ptc having elasticity: пат. KR20050114005 Корея. заявл. 31.05.2004;опубл. 05.12.2005.9331. Wang S.C., Chu F.H. Surface-mounted over-current protection device: пат. US7701322 США.заявл. 03.07.2006; опубл. 20.04.2010.32. Wang S.C., Chu F.H. Surface-mounted over-current protection device: пат. US6228287 США.заявл. 17.09.1999; опубл. 08.05.2001.33. Donnet J.B., Bansal R.C., and Wang M.J. Carbon Black: Sceince and Technology, 2nd ed. NewYork: Marcel Dekker Inc., 1993. 461 p.34.
Beaucage G., Rane S., Schaefer D.W., Long G., Fischer D. Morphology of Polyethylene–CarbonBlack Composites // J. Polym. Sci. B. 1999. Vol. 37. P. 1105–1119.35. Bao Y., Xu L., Pang H., Yan D.X., Chen C., Zhang W.Q., Tang J.H., Li Z.M. Preparation andproperties of carbon black/polymer composites with segregated and double-percolated networkstructures // J. Mater. Sci. 2013. Vol. 48(14). P. 4892-4898.36. Martinez F., Obieta G., Uribe I., Sikora T. Ochoteco E. Polymer-based self-standing flexible strainsensor // J.
Sensors. 2010. Article ID 659571. P. 1-5.37. De Focatiis D.S.A., Hull D., Sa´nchez-Valencia A. Roles of prestrain and hysteresis onpiezoresistance in conductive elastomers for strain sensor applications // Plastics, Rubber andComposites. 2012. Vol. 41(7). P. 301-309.38. Flandin L., Cavaille J., Brechet Y., Dendievel R. Characterization of the damage in nanocompositematerials by a.c. electrical properties: experiment and simulation // J Mater Sci. 1999.
Vol. 34. P.1753-1759.39. Vega A., Sumfleth J., Wittich H., Schulte K. Time and temperature dependent piezoresistance ofcarbon nanofiller/polymer composites under dynamic load // J. Mater. Sci. 2012. Vol. 47. P. 26482657.40. Uldry J.P., Russell R.A. Developing conductive elastomers for applications in robotic tactilesensing // Adv. Robot. 1991. Vol. 6. P. 255–271.41. Guo L., Berglin L., Mattila H. Textile strain sensors characterization – sensitivity, linearity,stability and hysteresis // Nord.
Text. J. 2010. Vol. 2. P. 51–63.42. Tognetti A., Bartalesi R., Lorussi F., De Rossi D. Body segment position reconstruction andposture classification by smart textiles // Trans. Inst. Meas. Control. 2007. Vol. 29. P. 215–253.43. Kalantari M., Ramezanifard M., Ahmadi R., Dargahi J. Kovecses J. A piezoresistive tactile sensorfor tissue characterization during catheter-based cardiac surgery // Int. J. Med. Robot. Comput.
Assist.Surg. 2011. Vol. P. 431–440.44. Giorgino T., Tormene P., Lorussi F., De Rossi D., Quaglini S. Sensor evaluation for wearablestrain gauges in neurological rehabilitation // IEEE Trans. Neural Syst. Rehabil. Eng. 2009. Vol. 17. P.409-415.9445. De Rossi D., Veltink P.H. Wearable technology for biomechanics: e-textile or micromechanicalsensors? // IEEE Eng. Med. Biol.
Mag. 2010. Vol. 29. P. 37–43.46. Coyle S. , Wu Y.Z., Lau K.T., De Rossi D., Wallace G., Diamond D. Smart nanotextiles: a reviewof materials and applications // MRS Bull. 2007. Vol. 32. P. 434–442.47. Bartalesi R., Lorussi F., De Rossi D., Tesconi M., Tognetti A. Wearable monitoring of lumbarspine curvature by inertial and e-textile sensory fusion // Proc. 32nd Annual Int. Conf. of IEEEEngineering in Medicine and Biology Society, August– September 2010, Buenos Aires, Argentina,IEEE EMBC. P.
6373–6376.48. Hatami K., Grady B.P., Ulmer M.C. Sensor-Enabled Geosynthetics: Use of Conducting CarbonNetworks as Geosynthetic Sensors // Geotch. Geoenv. Eng. 2009. Vol. 135. P. 863-874.49. Hatami K., Bathurst R.J. Numerical Model for Reinforced Soil Segmental Walls under SurchargeLoading // J. Geotch. Geoenv.
Eng. 2006. Vol. 132. P. 673-684.50. Hatami K., Fathi A., Grady B. P. Sensor-Enabled Geosynthetics (SEG) for Health Monitoring ofReinforced Soil Structures // Geo-Frontiers 2011. 2011. P. 2183-2193.51. Harun F.K., Jumadi A.M., Mahmood N.H. Carbon black polymer composite gas sensor forelectronic nose // Int. J. Sci. Eng. Res. 2011. Vol. 2(11). P. 1-7.52. Tsubokawa N., Shirai Y., Okazaki M., Maruyama K.
A novel gas sensor from crystalline polymergrafted carbon black: responsibility of electric resistance of composite from crystalline polymergrafted carbon black against solvent vapor // Polym. Bull. 1999. Vol. 42(4). P. 425-431.53. Weerakoon K.A., Chin B.A. A chemical switch for detecting insect infestation // Pest Manag. Sci.2012. Vol. 68(6). P.
906-913.54. Chen J., Tsubokawa N. Novel gas sensor from polymer-grafted carbon black: Vapor response ofelectric resistance of conducting composites prepared from poly(ethylene-block-ethylene oxide)grafted carbon black // J. Appl. Polym. Sci. 2000. Vol. 77(11). P. 2437-2447.55. Гуль В.Е., Шенфиль Л.З. Электропроводящие полимерные композиции. М.: Химия, 1984.240 с.56. Ивановский В.И. Технический углерод.
Процессы и аппараты: Учебное пособие. Омск:ОАО «Техуглерод», 2004. 228 с.57. Орлов В.Ю. Производство и использоване технического углерода для резин. Ярославль:Издательство Александр Рутман, 2002. 512 с.58. Никитин Ю.Н., Корнев А.Е., Устинов В.В. О факторах, определяющих электропроводящиесвойства технического углерода // Каучук и резина. 1983. N. 3. С. 20-22.59. Никитин Ю.Н., Корнев А.Е., Расторгуева Н.Н., Червяков П.И. О роли пористости печноготехнического углерода в повышении электропроводности вулканизатов // Каучук и резина.1983. N. 1. С. 20-23.9560.
Печковская К.А. Сажа, как усилитель каучука. М.: Химия, 1968. 216 с.61. Клочко Б.Н., Зачатейский Е.Е., Биндер В.Я. Влияние дисперсности и структурности сажи наее электрическое сопротивление // Каучук и резина. 1969. N. 8. С. 22-24.62. Зуев В.П., Михайлов В.В. Производство сажи. М.: Химия, 1968. 317 с.63.
Sommers D.J. Carbon black for electrically conductive plastics // Polym.-Plast. Technol. Eng.1984. Vol. 23(1). P. 83-98.64. Морозов И.А., Свистков А.Л., Heinrich G., Lauke B. Структура каркаса из агрегатов частицтехнического углерода в наполненных эластомерных материалах // Высокомол. соед. А. 2007.Т. 49. N. 3. С. 456-464.65. Wang M.J. Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of FilledVulcanizates // Rubber Chem. Technol. 1998. Vol. 71(3).
P. 520-589.66. Frohlich J., Niedermeier W., Luginsland H.D. The effect of filler–filler and filler–elastomerinteraction on rubber reinforcement, Composites // Composites. A. 2005. Vol. 36(4). P. 449-460.67. Brigandi P.J., Cogen J.M., Pearson R.A. Electrically conductive multiphase polymer blend carbonbased composites // Polym. Eng. Sci. 2014. Vol. 54(1). P. 1-16.68. Huang C.L., Chen Y.C., Wang C., Tu C.F., Liao F.S. Structural variations and morphologicalfeatures of polyethylene/carbon black conductive composites after processing in an internal mixer // J.Appl. Polym. Sci.