Электропроводящие полимерные композиты с повышенным положительным температурным коэффициентом электрического сопротивления (1091407), страница 21
Текст из файла (страница 21)
Interfaces. 1996. Vol.4(4). P. 169-176.163. Wu G.Z., Asai S., Sumita M., Yui H. Entropy Penalty-Induced Self-Assembly in Carbon Black orCarbon Fiber Filled Polymer Blends // Macromol. 2002. Vol. 35(3). P. 945-951.102164. Zhang T., Zou X.X., Zhang S.J., Yang W., Yang M.B. Effect of entropy penalty on selectivedistribution of aluminum borate whiskers in isotactic polypropylene (iPP)/syndiotactic polypropylene(sPP) blends // Polymer. 2009.
Vol. 50(13). P. 3047-3054.165. Fenouillot F., Cassagnau P., Majeste J.C. Uneven distribution of nanoparticles in immisciblefluids: Morphology development in polymer blends // Polymer. 2009. Vol. 50(6). P. 1333-1350.166. Xu Z.B., Zhao C., Gu A.J., Fang Z.P., Tong L.F. Effect of morphology on the electricconductivity of binary polymer blends filled with carbon black // J. Appl.
Polym. Sci. 2007. Vol.106(3). P. 2008-2017.167. Elias L., Fenouillot F., Majeste J.C., Cassagnau P. Morphology and rheology of immisciblepolymer blends filled with silica nanoparticles // Polymer. 2007. Vol. 48(20). P. 6029-6040.168. Gubbels F., Jerome R., Vanlathem E., Deltour R., Blacher S., Brouers F. Kinetic andthermodynamic control of the selective localization of carbon black at the interface of immisciblepolymer blends // Chem. Mater. 1998. Vol. 10.
1227-1235.169. Dai K., Xu X.B., Li Z.M. Electrically conductive carbon black (CB) filled in situ microfibrillarpoly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution //Polymer. 2007. Vol. 48(3). P. 849-859.170. Wu S. Polymer Interface and Adhesion. New York: Marcel Dekker Inc., 1982. 630 p.171. Wu S. Interface and surface tension of polymers // J.
Macromol. Sci. Rev. Macromol. Chem.1974. Vol. 10(1). P. 1-73.172. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers // J.Appl. Polym. Sci.1969. Vol. 13(8). P. 1741-1747.173. Yui H.S., Wu G.Z., Sano H., Sumita M., Kino K. Morphology and electrical conductivity ofinjection-molded polypropylene/carbon black composites with addition of high-density polyethylene //Polymer. 2006. Vol. 47(10). P. 3599-3608.174. Xu H.P., Dang Z.M., Shi D.H., Bai J.B.
Remarkable selective localization of modified nanoscaledcarbon black and positive temperature coefficient effect in binary-polymer matrix composites // J.Mater. Chem. 2008. Vol. 18. 2685-2690.175. Zhang Q.X. Conductive polymer material and its preparation method: пат CN1948381 Китай.заявл. 27.10.2006; опубл. 18.04.2007.176. Zhang M.Q., Yu G., Zeng H.M., Zhang H.B., Hou Y.H. Two-Step Percolation in Polymer BlendsFilled with Carbon Black // Macromol.
1998. Vol. 31(19). P. 6724-6726.177. Jose S., Aprem A.S., Francis B., Chandy M.C., Werner P., Alstaede V., Thomas S. Phasemorphology, crystallisation behaviour and mechanical properties of isotactic polypropylene/highdensity polyethylene blends // Eur. polym. J. 2004. Vol. 40(9). P. 2105-2115.103178. Feng J., Chan C.M. Carbon Black-Filled Immiscible Blends of Poly(Viny1idene Fluoride) andHigh Density Polyethylene: The Relationship Between Morphology and Positive and NegativeTemperature Coefficient Effects // Polym.
Eng. Sci. 1999. Vol. 39(7). P. 1207-1215.179. Lee M.G.; Nho Y.C. Electrical resistivity of carbon black-filled high-density polyethylene(HDPE) composite containing radiation crosslinked HDPE particles // Radiat. Phys. Chem. 2001. Vol.61. P. 75-79.180. Xie H., Dong L., Sun J. influence of radiation structures on positive-temperature- coefficient andnegative-temperature-coefficient effects of irradiated low-density polyethylene/carbon blackcomposites // J. Appl. Polym.
Sci.. 2005. Vol. 95. P. 700-704.181. Keller A., Ungar G. Radiation effects and crystallinity in polyethylene // Radiat. Phys. Chem.1983. Vol. 22. P. 155-181.182. Xie H., Deng. P,L. Dong, Sun. J. LDPE/Carbon black conductive composites: Influence ofradiation crosslinking on PTC and NTC properties // J. App. Polym. Sci. 2002. Vol. 85(13). P. 2742–2749.183. Yi X.S., Zhang J.F., Zheng Q., Pan Y.. Influence of irradiation conditions on the electricalbehavior of polyethylene carbon black conductive composites.
J. Appl. Polym. Sci. 2000. Vol. 77. P.494–499.184. Lawton E.J., Balwit J.S., Powell R. Effect of physical state during the electron irradiation ofhydrocarbon polymers. Part I. The influence of physical state on reactions occurring in polyethyleneduring and following the irradiation // J. Polym. Sci. 1958. Vol. 32(125). P.
257-275.185. Hikmet R., Keller A. Segregation effects in irradiated polyethylene // Radiat. Phys. Chem. 1987.Vol. 29(4). P. 275-28.186. Harland W.G., Khadr M.M., Peters R.H. High-density polyethylene: thermal history and meltingcharacteristics // Polymer. 1972. Vol. 13(1). P. 13-19.187. Huang S.J., Lee J.K., Ha C.S. Polymeric positive-temperature-coefficient materials: dynamiccuring effect // Colloid. Polym. Sci. 2004. Vol. 282. P.
575–582.188. Narkis M., Ram A., Flashner F. Electrical properties of carbon black filled polyethylene // Polym.Eng. Sci. 1978. Vol. 18(8). P. 649-653.189. Narkis M., Ram A., Stein Z. Electrical properties of carbon black filled crosslinked polyethylene// Polym. Eng. Sci. 1981. Vol. 21(16). P. 1049-1054.190. Narkis M., Ram A., Stein Z. Effect of crosslinking on carbon black/polyethylene switchingmaterials // J. Appl.
Polym. Sci. 1980. Vol. 25(7). P. 1515-1518.191. Zheng Q., Shen L., Li W., Song Y., Yi X. Nonlinear conductive properties and scaling behaviorof conductive particle filled high-density polyethylene composites // Chinese Science Bulletin. 2005.Vol. 50(5). P. 385-395.104192. Yu G., Zhang M.Q., Hou Y.H., Zhang H.B., Zeng H.M. Conductive polymer blends filled withcarbon black: Positive temperature coefficient behavior // Polym. Eng. Sci. 1999.
Vol. 39(9). P. 16781688.193. Tang H., Liu Z., Piao J., Chen X., Luo Y., Li S. Electrical behavior of carbon black-filledpolymer composites: Effect of interaction between filler and matrix // J. Appl. Polym. Sci. 1994. Vol.51(7). P. 1159-1164.194. Jia W., Chen X. PTC effect of polymer blends filled with carbon black // J.
Appl. Polym. Sci.1994. Vol. 54(9). P. 1219-1221.195. Yi X.S., Wu G., Ma D. Property balancing for polyethylene-based carbon black-filled conductivecomposites // J. Appl. Polym. Sci. 1998. Vol. 67(1). P. 131-138.196. Yang G. Effect of crosslinking and field strength on the electrical properties of carbon/polyolefincomposites with a large positive temperature coefficient of resistivity // Polymer Composites. 1997.Vol. 18(4). P. 484-491.197. Hall T.J. Electrical devices having improved PTC polymeric compositions: пат.
US5880668США. заявл. 28.08.1996; опубл. 09.03.1999.198. Park S.J., Kim H.C., Kim H.Y. Roles of Work of Adhesion between Carbon Blacks andThermoplastic Polymers on Electrical Properties of Composites // J. Colloid Interf. Sci. 2002. Vol.255(1). P. 145-149.199.
Zhang X.W., Pan Y., Zheng Q., Yi X.S. A new polymer composite thermistor having double PTCtransitions // J. Appl. Polym. Sci. 2000. Vol. 78(2). P. 424-429.200. Das N.C., Chaki T.K., Khastgir D. Effect of filler treatment and crosslinking on mechanical anddynamic mechanical properties and electrical conductivity of carbon black-filled ethylene vinyl acetatecopolymer composites // J. Appl.
Polym. Sci. 2003. Vol. 90(8). P. 2073-2082.201. He X., Chen F., Chen X. PTC effect of carbon black filled polypropylene // J. Mater. Sci. Lett.2001. Vol. 20(7). P. 589-590.202. Корнев А.Е., Овсянников Н.Я., Оськин В.М. Электропроводящие резины со стабильнымиэлектрическими характеристиками // Каучук и резина. 2000. N. 6. С.
28-32.203. Овсянников Н.Я., Корнев А.Е. Исследование свойств материалов, полученных привысокотемпературной обработке резин // Каучук и резина. 1997. N. 3. С. 28-30.204. Tsai C.S., Liu C.I., Tsao K.Y., Chen K.N., Yeh J.T., Huang C.Y. Effect of Initiator on the OverVoltage Positive Temperature Coefficient of Linear Low Density Polyethylene/Carbon Black NanoComposites // Macromol.
Symp. 2009. Vol. 286. P. 125–134.205. Tang H., Chen X., Luo Y. Studies on the PTC/NTC effect of carbon black filled low densitypolyethylene composites // Eur. Polym. J. 1997. Vol. 33(8). P. 1383-1386.105206. Lee G.J., Suh K.D., Im S.S. Study of electrical phenomena in carbon black–filled HDPEcomposite // Polym. Eng. Sci. 1998. Vol. 38(3). P. 471-477.207. Matsushige K., Kobayashi K., Iwami N., Horiuchi T., Shitamori E., Itoi M. Nanoscopic analysisof the conduction mechanism in organic positive temperature coefficient composite materials // ThinSolid Films. 1996. Vol. 273.
P. 128-131.208. Foulger S.H. Electrical properties of composites in the vicinity of the percolation threshold // J.Appl. Polym. Sci. 1999. Vol. 72(12). P. 1573-1582.209. Zhang J.F., Zheng Q., Yang Y.Q., Yi. X.S. High-density polyethylene/carbon black conductivecomposites. II. Effect of electron beam irradiation on relationship between resistivity–temperaturebehavior and volume expansion // J.