Константинов Н.А., Лалин В.В., Лалина И.И. - Расчёт статически определимых стержневых систем с использованием SCAD (1061793), страница 28
Текст из файла (страница 28)
ɪɚɡɞɟɥ 4.4 ɩɨɫɨɛɢɹ).ȼɢɞɧɨ, ɱɬɨ ɭɪɚɜɧɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ ɭɡɥɨɜ ɜɢɞɚ ¦ X ɭɡɥɚ 0 ɢ ¦ Z ɭɡɥɚ 0ɬɨɠɞɟɫɬɜɟɧɧɨ ɭɞɨɜɥɟɬɜɨɪɹɸɬɫɹ.1641035,74160,93160,040,0200,42160,089,44150,31587200,429,69150,31240,42200,42200,429,6970.0480.040.0121,24130,9340.0170,42150,311H1=150,31V1 = 200,42130,932H2=130,93V2 = 170,42340.0Ɋɢɫ. 8.18ɉɪɨɜɟɪɤɚ ɪɚɜɧɨɜɟɫɢɹ ɥɸɛɨɣ ɱɚɫɬɢ ɪɚɦɵɉɪɟɞɵɞɭɳɢɟ ɩɪɨɜɟɪɤɢ ɪɚɜɧɨɜɟɫɢɹ ɨɬɧɨɫɢɥɢɫɶ ɤɨ ɜɫɟɣ ɪɚɦɟ ɢ ɤ ɭɡɥɚɦɧɚɦɟɱɟɧɧɨɣ ɫɢɫɬɟɦɵ ɤɨɧɟɱɧɵɯ ɷɥɟɦɟɧɬɨɜ ɧɚ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɟ ɆɄɗ.Ɉɞɧɚɤɨ ɢɧɨɝɞɚ, ɞɥɹ ɤɨɧɬɪɨɥɹ ɩɨɫɬɪɨɟɧɧɵɯ ɷɩɸɪ ɭɫɢɥɢɣ, ɭɞɨɛɧɨɪɚɫɫɦɨɬɪɟɬɶ ɪɚɜɧɨɜɟɫɢɟ ɤɚɤɨɣ – ɥɢɛɨ ɱɚɫɬɢ ɪɚɦɵ. Ⱦɥɹ ɡɚɞɚɧɧɨɣ ɪɚɦɵ ɬɚɤɨɣɱɚɫɬɶɸ ɹɜɥɹɟɬɫɹ, ɧɚɩɪɢɦɟɪ, ɝɨɪɢɡɨɧɬɚɥɶɧɵɣ ɪɢɝɟɥɶ (ɪɢɫ.
8.19).Ɋɢɫ. 8.19Ⱦɥɹ ɛɵɫɬɪɨɣ ɩɪɨɜɟɪɤɢ ɜɵɪɟɡɚɧɧɨɣ ɱɚɫɬɢ ɪɚɦɵ ɢɫɩɨɥɶɡɭɟɦ ɧɟ ɬɪɢ165ɭɪɚɜɧɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ, ɚ ɬɨɥɶɤɨ ɞɜɚ: ¦ X ɱɚɫɬɢ 0 ɢ ¦ Z ɱɚɫɬɢ 0 . ȼɢɞɧɨ, ɱɬɨɪɚɜɧɨɜɟɫɢɟ ɫɨɛɥɸɞɚɟɬɫɹ.Ɍɚɤɚɹ ɩɪɨɜɟɪɤɚ (ɩɨ ɭɝɥɚɦ ɧɚɤɥɨɧɚ ɷɩɸɪ M ɧɚ ɪɚɡɪɟɡɚɧɧɵɯ ɫɬɨɣɤɚɯ)ɩɨɡɜɨɥɹɟɬ ɫɭɞɢɬɶ ɢ ɨ ɩɪɚɜɢɥɶɧɨɫɬɢ ɜɢɞɚ ɷɩɸɪɵ M ɧɚ ɫɬɨɣɤɚɯ ɪɚɦɵ.ɉɪɨɜɟɪɤɚ ɭɞɨɜɥɟɬɜɨɪɟɧɢɹ ɭɪɚɜɧɟɧɢɣ ɪɚɜɧɨɜɟɫɢɹɞɥɹ ɥɸɛɨɝɨ ɛɟɫɤɨɧɟɱɧɨ ɦɚɥɨɝɨ ɷɥɟɦɟɧɬɚ dx ɪɚɦɵɄɚɤ ɩɨɤɚɡɚɧɨ ɜ ɩɨɞɪɚɡɞɟɥɟ 1.7, ɥɸɛɨɣ ɛɟɫɤɨɧɟɱɧɨ ɦɚɥɵɣ ɷɥɟɦɟɧɬ ɞɥɢɧɨɣdx, ɡɚɝɪɭɠɟɧɧɵɣ ɩɪɨɞɨɥɶɧɨɣ ɢ ɩɨɩɟɪɟɱɧɨɣ ɪɚɫɩɪɟɞɟɥɟɧɧɵɦɢ ɧɚɝɪɭɡɤɚɦɢɢɧɬɟɧɫɢɜɧɨɫɬɶɸ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ q x1 ɢ q z1 , ɧɚɯɨɞɢɬɫɹ ɜ ɪɚɜɧɨɜɟɫɢɢ, ɟɫɥɢɫɨɛɥɸɞɚɸɬɫɹ ɭɪɚɜɧɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ ɷɬɨɝɨ ɷɥɟɦɟɧɬɚ:dQdNdM1)q x1; 2)q z1; 3)Q.dxdxdxɉɪɨɜɟɪɤɚ ɫɨɛɥɸɞɟɧɢɹ ɷɬɢɯ ɭɪɚɜɧɟɧɢɣ ɹɜɥɹɟɬɫɹ ɩɪɨɜɟɪɤɨɣ ɩɪɚɜɢɥɶɧɨɫɬɢɩɨɫɬɪɨɟɧɧɵɯ ɷɩɸɪ.ȼ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɣ ɪɚɦɟ:1) ɧɚ ɜɫɟɯ Ʉɗ q x1 0 .
ɉɨɷɬɨɦɭ dN / dx 0 . Ɉɬɫɸɞɚ ɫɥɟɞɭɟɬ, ɱɬɨ ɜɫɟɷɩɸɪɵ N ɞɨɥɠɧɵ ɛɵɬɶ ɩɚɪɚɥɥɟɥɶɧɵ ɨɫɹɦ ɫɬɟɪɠɧɟɣ. ɗɬɨ ɫɨɛɥɸɞɚɟɬɫɹ.2) ɇɚ ɷɥɟɦɟɧɬɚɯ 1 – 5 q z1 0 . ɉɨɷɬɨɦɭ dQ / dx 0 .Ɂɧɚɱɢɬ, ɜɫɟ ɷɩɸɪɵ Q ɧɚ ɭɤɚɡɚɧɧɵɯ ɷɥɟɦɟɧɬɚɯ ɞɨɥɠɧɵ ɛɵɬɶ ɩɚɪɚɥɥɟɥɶɧɵɨɫɹɦ ɫɬɟɪɠɧɟɣ. ɗɬɨ ɫɨɛɥɸɞɚɟɬɫɹ.3) Ʉɚɤ ɜɢɞɧɨ ɢɡ ɬɪɟɬɶɟɝɨ ɭɪɚɜɧɟɧɢɹ, ɩɪɢ ɩɨɫɬɨɹɧɧɨɦ ɡɧɚɱɟɧɢɢ Q ɧɚɷɥɟɦɟɧɬɚɯ 1 – 5 ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɷɩɸɪɵ M ɞɨɥɠɧɵ ɛɵɬɶ ɩɪɹɦɨɥɢɧɟɣɧɵɦɢ ɢɧɚɤɥɨɧɧɵɦɢ ɤ ɨɫɢ ɫɬɟɪɠɧɟɣ ɩɨɞ ɭɝɥɨɦ D i arc tg Qi ( tgD i dM i / dx Qi ), ɝɞɟi – ɧɨɦɟɪ ɷɥɟɦɟɧɬɚ.
ɗɬɨ ɬɪɟɛɨɜɚɧɢɟ ɜɵɩɨɥɧɟɧɨ.ɇɚ ɷɥɟɦɟɧɬɚɯ 6 ɢ 9 ɫ ɪɚɜɧɨɦɟɪɧɨ ɪɚɫɩɪɟɞɟɥɟɧɧɨɣ ɧɚɝɪɭɡɤɨɣ ɷɩɸɪɚ Mɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɚɪɚɛɨɥɭ ɜɬɨɪɨɣ ɫɬɟɩɟɧɢ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɷɩɸɪɵ Q6 ɢ Q9ɛɭɞɭɬ ɨɩɢɫɵɜɚɬɶɫɹ ɥɢɧɟɣɧɨɣ ɮɭɧɤɰɢɟɣ. Ɍɚɦ, ɝɞɟ Q6 = 0 ɢ Q90 , ɧɚ ɷɩɸɪɚɯ M6ɢ M9 ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɛɭɞɭɬ ɷɤɫɬɪɟɦɚɥɶɧɵɟ ɡɧɚɱɟɧɢɹ ɨɪɞɢɧɚɬ ɢɡɝɢɛɚɸɳɢɯɦɨɦɟɧɬɨɜ. ɗɬɨ ɫɨɨɬɜɟɬɫɬɜɢɟ ɜ ɷɩɸɪɚɯ M ɢ Q ɧɚ ɭɤɚɡɚɧɧɵɯ ɫɬɟɪɠɧɹɯ ɢɦɟɟɬɫɹ.Ɂɚɤɥɸɱɟɧɢɟȼɵɩɨɥɧɟɧɧɵɟ ɩɪɨɜɟɪɤɢ ɩɨɡɜɨɥɹɸɬ ɫɞɟɥɚɬɶ ɜɵɜɨɞ, ɱɬɨ ɪɚɫɱɟɬ ɪɚɦɵ ɩɨɨɩɪɟɞɟɥɟɧɢɸ ɭɫɢɥɢɣ ɜ ɫɟɱɟɧɢɹɯ ɟɟ ɫɬɟɪɠɧɟɣ ɢ ɜ ɨɩɨɪɧɵɯ ɫɜɹɡɹɯ ɜɵɩɨɥɧɟɧɩɪɚɜɢɥɶɧɨ.1669. ɈɉɊȿȾȿɅȿɇɂȿ ɍɋɂɅɂɃ ȼ ɋɌȿɊɀɇəɏ ɎȿɊɆɕɉɨɫɬɚɧɨɜɤɚ ɡɚɞɚɱɢ ɢ ɚɧɚɥɢɡ ɡɚɞɚɧɧɨɣ ɪɚɫɱɟɬɧɨɣ ɪɚɦɵ.
Ɋɚɫɫɦɨɬɪɢɦɩɪɢɦɟɪ ɜɵɩɨɥɧɟɧɢɹ ɪɚɫɱɟɬɧɨɣ ɪɚɛɨɬɵ 4 ɢɡ ɫɛɨɪɧɢɤɚ ɡɚɞɚɧɢɣ ɢ ɡɚɞɚɱ(ɫɦ. ɩɪɢɥɨɠɟɧɢɟ 1 ɢɥɢ [1, 6]).ɉɨ ɲɢɮɪɭ ABCD ɢɡ ɫɛɨɪɧɢɤɚ ɜɵɛɢɪɚɟɦ ɪɚɫɱɟɬɧɭɸ ɫɯɟɦɭ ɮɟɪɦɵ(ɪɢɫ. 9.1), ɟɟ ɪɚɡɦɟɪɵ, ɦ, ɢ ɧɚɝɪɭɡɤɭ ɧɚ ɧɟɟ ɜ ɜɢɞɟ ɡɚɝɪɭɠɟɧɢɣ 1 ɢ 2ɫɨɫɪɟɞɨɬɨɱɟɧɧɵɦɢ ɫɢɥɚɦɢ, ɤɇ, ɩɪɢɥɨɠɟɧɧɵɦɢ ɜ ɭɡɥɚɯ ɜɟɪɯɧɟɝɨ ɩɨɹɫɚ ɮɟɪɦɵ.0.5 P2P2P20.5 P20.5 P1P1P1P12P1P10.5 P111.5222222212Ɋɢɫ. 9.1ȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɡɚɞɚɧɢɟɦ ɤ ɪɚɛɨɬɟ 4 ɬɪɟɛɭɟɬɫɹ:9.1.
Ɋɚɫɱɟɬɨɦ ɆɄɗ ɧɚ ɉɄ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɩɪɨɝɪɚɦɦɵ SCADɨɩɪɟɞɟɥɢɬɶ ɭɫɢɥɢɹ N ɜ ɫɬɟɪɠɧɹɯ ɮɟɪɦɵ ɢ ɩɨɫɬɪɨɢɬɶ ɢɯ ɷɩɸɪɵ. ɉɨɨɩɪɟɞɟɥɟɧɧɵɦ ɭɫɢɥɢɹɦ ɜ ɫɬɟɪɠɧɹɯ ɢɡ ɭɪɚɜɧɟɧɢɣ ɪɚɜɧɨɜɟɫɢɹ ɨɩɨɪɧɵɯ ɭɡɥɨɜɩɨɞɫɱɢɬɚɬɶ ɨɩɨɪɧɵɟ ɪɟɚɤɰɢɢ ɮɟɪɦɵ.9.2. 2. ȼɵɩɨɥɧɢɬɶ ɤɨɧɬɪɨɥɶ ɨɩɪɟɞɟɥɟɧɧɵɯ ɧɭɥɟɜɵɯ ɭɫɢɥɢɣ ɢ ɭɫɢɥɢɣ ɜɨɬɦɟɱɟɧɧɵɯ ɧɚ ɫɯɟɦɟ ɫɬɟɪɠɧɹɯ, ɢɫɩɨɥɶɡɭɹ ɪɚɰɢɨɧɚɥɶɧɵɟ ɫɩɨɫɨɛɵ ɩɪɢɦɟɧɟɧɢɹɭɪɚɜɧɟɧɢɣ ɪɚɜɧɨɜɟɫɢɹ ɫ ɭɱɟɬɨɦ ɤɨɧɫɬɪɭɤɬɢɜɧɵɯ ɨɫɨɛɟɧɧɨɫɬɟɣ ɮɟɪɦɵ(ɫɦ. ɩɨɞɪɚɡɞɟɥɵ 4.4 ɢ 4.5 ɢ 5.6) ɩɨɫɨɛɢɹ).1679.1. ɊȺɋɑȿɌ ɎȿɊɆɕ ɆȿɌɈȾɈɆ ɄɈɇȿɑɇɕɏ ɗɅȿɆȿɇɌɈȼ ɇȺ ɉɄɋ ɂɋɉɈɅɖɁɈȼȺɇɂȿɆ ɉɊɈȽɊȺɆɆɕ SCADɉɨɫɤɨɥɶɤɭ ɧɚ ɞɚɧɧɨɦ ɷɬɚɩɟ ɢɡɭɱɟɧɢɹ ɦɟɬɨɞɨɜ ɪɚɫɱɟɬɚ ɫɬɟɪɠɧɟɜɵɯ ɫɢɫɬɟɦɢɡɭɱɚɟɬɫɹ ɦɟɬɨɞɢɤɚ ɪɚɫɱɟɬɚ ɫɬɚɬɢɱɟɫɤɢ ɨɩɪɟɞɟɥɢɦɵɯ ɫɬɟɪɠɧɟɜɵɯ ɫɢɫɬɟɦ,ɩɪɟɠɞɟ ɱɟɦ ɩɪɢɫɬɭɩɢɬɶ ɤ ɪɚɫɱɟɬɭ ɩɨ ɩɪɨɝɪɚɦɦɟ SCAD, ɧɟɨɛɯɨɞɢɦɨ ɩɪɨɜɟɪɢɬɶɜɵɩɨɥɧɟɧɢɟ ɭɫɥɨɜɢɣ ɫɬɚɬɢɱɟɫɤɨɣ ɨɩɪɟɞɟɥɢɦɨɫɬɢ ɮɟɪɦɵ. ɋ ɷɬɨɣ ɰɟɥɶɸɜɵɩɨɥɧɹɸɬɫɹ ɞɜɟ ɨɩɟɪɚɰɢɢ:1.
ɉɨɞɫɱɢɬɵɜɚɟɬɫɹ ɫɬɟɩɟɧɶ ɫɬɚɬɢɱɟɫɤɨɣ ɧɟɨɩɪɟɞɟɥɢɦɨɫɬɢ:nɝɞɟ(n ɫ n ɨɩ ) - 2n ɭ ,(9.1)nɫ , nɨɩ , n ɭ í ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɱɢɫɥɨ ɫɬɟɪɠɧɟɣ ɪɟɲɟɬɤɢ ɮɟɪɦɵ, ɱɢɫɥɨɨɩɨɪɧɵɯ ɫɬɟɪɠɧɟɣ, ɱɢɫɥɨ ɭɡɥɨɜ ɮɟɪɦɵ (ɫɦ. ɩɨɞɪɚɡɞɟɥ 2.6).ȼ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɣ ɮɟɪɦɟ ɩɨɥɭɱɚɟɦ: n = (25+3) -2·14 = 0. ɇɟɨɛɯɨɞɢɦɨɟɭɫɥɨɜɢɟ ɫɬɚɬɢɱɟɫɤɨɣ ɨɩɪɟɞɟɥɢɦɨɫɬɢ ɮɟɪɦɵ ɜɵɩɨɥɧɟɧɨ.
Ɉɧɨ ɨɡɧɚɱɚɟɬ, ɱɬɨɱɢɫɥɨ ɧɟɢɡɜɟɫɬɧɵɯ ɭɫɢɥɢɣ ɜ ɫɬɟɪɠɧɹɯ ɮɟɪɦɵ ɫ ɭɱɟɬɨɦ ɭɫɢɥɢɣ ɜ ɨɩɨɪɧɵɯɫɬɟɪɠɧɹɯ ɪɚɜɧɨ ɱɢɫɥɭ ɭɪɚɜɧɟɧɢɣ ɪɚɜɧɨɜɟɫɢɹ, ɤɨɬɨɪɵɟ ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɞɥɹ ɜɫɟɯɭɡɥɨɜ ɮɟɪɦɵ. ɑɬɨɛɵ ɫɞɟɥɚɬɶ ɨɤɨɧɱɚɬɟɥɶɧɵɣ ɜɵɜɨɞ ɨ ɫɬɚɬɢɱɟɫɤɨɣɨɩɪɟɞɟɥɢɦɨɫɬɢ ɮɟɪɦɵ ɤɪɨɦɟ ɭɫɥɨɜɢɹ (9.1) ɞɨɥɠɧɚ ɫɨɛɥɸɞɚɬɶɫɹ ɝɟɨɦɟɬɪɢɱɟɫɤɚɹɧɟɢɡɦɟɧɹɟɦɨɫɬɶ ɮɟɪɦɵ. ɉɨɷɬɨɦɭ ɜɵɩɨɥɧɹɟɬɫɹ ɨɩɟɪɚɰɢɹ 2:2.
ɉɪɨɜɟɪɹɟɬɫɹ ɝɟɨɦɟɬɪɢɱɟɫɤɚɹ ɧɟɢɡɦɟɧɹɟɦɨɫɬɶ ɮɟɪɦɵ.ɋɬɪɭɤɬɭɪɧɵɣ ɚɧɚɥɢɡ ɮɟɪɦɵ (ɫɦ. ɪɚɡɞɟɥ 2 ɩɨɫɨɛɢɹ) ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɨɧɚɹɜɥɹɟɬɫɹ ɠɟɫɬɤɢɦ ɞɢɫɤɨɦ, ɩɪɢɤɪɟɩɥɟɧɧɵɦ ɤ ɠɟɫɬɤɨɦɭ ɨɫɧɨɜɚɧɢɸ ɬɪɟɦɹɫɬɟɪɠɧɹɦɢ, ɧɟ ɩɟɪɟɫɟɤɚɸɳɢɦɢɫɹ ɜ ɨɞɧɨɣ ɬɨɱɤɟ ɢ ɧɟ ɩɚɪɚɥɥɟɥɶɧɵɦɢ. Ɍɚɤɢɦɨɛɪɚɡɨɦ, ɮɟɪɦɚ ɝɟɨɦɟɬɪɢɱɟɫɤɢ ɧɟɢɡɦɟɧɹɟɦɚ.ɗɬɢ ɞɜɚ ɪɟɡɭɥɶɬɚɬɚ ɩɨɡɜɨɥɹɸɬ ɫɞɟɥɚɬɶ ɜɵɜɨɞ, ɱɬɨ ɡɚɞɚɧɧɚɹ ɮɟɪɦɚɹɜɥɹɟɬɫɹ ɫɬɚɬɢɱɟɫɤɢ ɨɩɪɟɞɟɥɢɦɨɣ ɫɢɫɬɟɦɨɣ.ɂɧɫɬɪɭɤɰɢɹ ɩɨ ɢɫɩɨɥɶɡɨɜɚɧɢɸ ɩɪɨɝɪɚɦɦɵ SCADȼ ɢɧɫɬɪɭɤɰɢɢ ɧɟ ɩɨɜɬɨɪɹɟɬɫɹ ɨɩɢɫɚɧɢɟ ɬɟɯ ɨɩɟɪɚɰɢɣ, ɤɨɬɨɪɵɟ ɛɵɥɢɪɚɫɫɦɨɬɪɟɧɵ ɜ ɪɚɡɞɟɥɚɯ 6 – 8 ɩɨɫɨɛɢɹ. ɉɨɷɬɨɦɭ ɩɪɢ ɜɵɩɨɥɧɟɧɢɢ ɷɬɚɩɚ 1«Ɂɚɩɭɫɤ ɩɪɨɝɪɚɦɦɵ SCAD ɢ ɩɨɞɝɨɬɨɜɤɚ ɤ ɫɨɡɞɚɧɢɸ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɮɟɪɦɵ»ɛɭɞɟɦ ɪɭɤɨɜɨɞɫɬɜɨɜɚɬɶɫɹ ɢɧɫɬɪɭɤɰɢɟɣ, ɩɪɢɜɟɞɟɧɧɨɣ ɜ ɪɚɡɞɟɥɟ 6.Ɂɞɟɫɶ ɩɪɨɞɨɥɠɢɦ ɤɨɧɤɪɟɬɧɨɟ ɜɵɩɨɥɧɟɧɢɟ ɢɧɫɬɪɭɤɰɢɢ, ɧɚɱɢɧɚɹ ɫ ɷɬɚɩɚ 2ɪɚɡɞɟɥɚ 6.2.
ɋɨɡɞɚɧɢɟ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɮɟɪɦɵ ɞɥɹ ɆɄɗ2.1. Ƚɪɚɮɢɱɟɫɤɨɟ ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɮɟɪɦɵɊɚɫɱɟɬɧɭɸ ɫɯɟɦɭ ɡɚɞɚɧɧɨɣ ɮɟɪɦɵ ɦɨɠɧɨ ɩɨɫɬɪɨɢɬɶ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦɢɦɟɸɳɢɯɫɹ ɜ ɩɪɨɝɪɚɦɦɟ SCAD ɬɢɩɨɜɵɯ ɫɯɟɦ. ɋ ɷɬɨɣ ɰɟɥɶɸ ɩɨɫɥɟ ɨɬɤɪɵɬɢɹ168ɨɤɧɚ ɞɥɹ ɫɨɡɞɚɧɢɹ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵɮɟɪɦɵ ɧɟɨɛɯɨɞɢɦɨ ɜɨɣɬɢ ɜ ɪɚɡɞɟɥɋɯɟɦɚ. Ʉɭɪɫɨɪ ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ ɧɚɡɚɤɥɚɞɤɟ ɋɯɟɦɚ ɢ ɧɚɠɢɦɚɟɬɫɹ ɥɟɜɚɹɤɧɨɩɤɚɦɵɲɢ.ɉɨɹɜɢɬɫɹɢɧɫɬɪɭɦɟɧɬɚɥɶɧɚɹ ɩɚɧɟɥɶ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɚɹ ɪɚɡɞɟɥɭ ɋɯɟɦɚ (ɟɟ ɱɚɫɬɶ ɛɵɥɚɩɪɢɜɟɞɟɧɚ ɜ ɪɚɡɞɟɥɟ 6, ɫɦ. ɫ. 121).ɇɚ ɷɬɨɣ ɩɚɧɟɥɢ ɧɚɠɢɦɚɟɬɫɹ ɜɬɨɪɚɹ ɤɧɨɩɤɚ ɫɥɟɜɚ «Ƚɟɧɟɪɚɰɢɹ ɩɪɨɬɨɬɢɩɚɮɟɪɦɵ».
ɉɨɹɜɢɬɫɹ ɨɤɧɨ Ʉɨɧɮɢɝɭɪɚɰɢɹ ɩɨɹɫɨɜ ɮɟɪɦɵ, ɜ ɤɨɬɨɪɨɦ ɢɡɩɪɟɞɫɬɚɜɥɟɧɧɵɯ ɬɢɩɨɜ ɮɟɪɦ ɜɵɛɢɪɚɟɬɫɹ «Ⱦɜɭɫɤɚɬɧɚɹ ɮɟɪɦɚ». ɉɨɫɥɟɩɨɞɬɜɟɪɠɞɟɧɢɹ ɜɵɛɨɪɚ ɧɚɠɚɬɢɟɦ ɤɧɨɩɤɢ «ɈɄ» ɩɨɹɜɢɬɫɹ ɨɱɟɪɟɞɧɨɟ ɞɢɚɥɨɝɨɜɨɟɨɤɧɨ ɉɚɪɚɦɟɬɪɵ ɫɯɟɦɵ, ɜ ɤɨɬɨɪɨɦ ɢɡɨɛɪɚɠɟɧɵ 8 ɬɢɩɨɜɵɯ ɫɯɟɦ ɞɜɭɫɤɚɬɧɵɯɮɟɪɦ.ȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɡɚɞɚɧɢɟɦ (ɫɦ. ɪɢɫ. 9.1), ɜɵɛɢɪɚɟɦ ɜɨɫɶɦɨɣ ɫɜɟɪɯɭ ɬɢɩɮɟɪɦɵ ɢ ɜɜɨɞɢɦ ɞɥɹ ɧɟɟ ɬɪɟɛɭɟɦɵɟ ɜ ɨɤɧɟ ɢɫɯɨɞɧɵɟ ɞɚɧɧɵɟ (ɫɦ. ɩɪɢɜɟɞɟɧɧɭɸɡɞɟɫɶ ɱɚɫɬɶ ɨɤɧɚ ɉɚɪɚɦɟɬɪɵ ɫɯɟɦɵ).ɉɨɫɥɟ ɩɨɞɬɜɟɪɠɞɟɧɢɹ ɧɚɠɚɬɢɟɦ ɤɧɨɩɤɢ «ɈɄ» ɧɚɡɧɚɱɟɧɧɵɯ ɩɚɪɚɦɟɬɪɨɜɧɚ ɷɤɪɚɧɟ ɩɨɹɜɢɬɫɹ ɨɤɧɨ ɫ ɫɨɡɞɚɧɧɨɣ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɨɣ ɮɟɪɦɵ ɞɥɹ ɆɄɗ.871413191108161012111321191722232231220181511934455624614257Ɋɢɫ. 9.2Ʉɚɤ ɭɠɟ ɨɬɦɟɱɚɥɨɫɶ ɜ ɪɚɡɞɟɥɟ 6 (ɫɦ. ɷɬɚɩ 1, ɩɭɧɤɬ 1.4), ɜɦɟɫɬɟ ɫɨ ɫɯɟɦɨɣɮɟɪɦɵ ɜ ɨɤɧɟ ɩɨɹɜɹɬɫɹ ɞɜɟ ɩɨɞɜɢɠɧɵɯ ɩɚɧɟɥɢ: Ɏɢɥɶɬɪɵ ɨɬɨɛɪɚɠɟɧɢɹ ɢȼɢɡɭɚɥɢɡɚɰɢɹ, ɮɨɪɦɚ ɤɨɬɨɪɵɯ ɦɨɠɟɬ ɛɵɬɶ ɢɡɦɟɧɟɧɚ ɪɚɫɱɟɬɱɢɤɨɦ.ɇɚɠɚɬɵɟ ɧɚ ɩɚɧɟɥɢ Ɏɢɥɶɬɪɵ ɨɬɨɛɪɚɠɟɧɢɹ ɤɧɨɩɤɢ ɩɨɡɜɨɥɢɥɢɨɬɨɛɪɚɡɢɬɶ ɧɚ ɫɯɟɦɟ ɮɟɪɦɵ ɭɡɥɵ ɢ ɧɨɦɟɪɚ ɭɡɥɨɜ ɢ ɷɥɟɦɟɧɬɨɜ.
Ɇɨɠɧɨɨɬɨɛɪɚɡɢɬɶ ɬɚɤɠɟ ɨɛɳɭɸ ɫɢɫɬɟɦɭ ɤɨɨɪɞɢɧɚɬ ɢ ɦɟɫɬɧɵɟ ɫɢɫɬɟɦɵ ɤɨɨɪɞɢɧɚɬɜɫɟɯ ɷɥɟɦɟɧɬɨɜ.169Ɉɞɧɚɤɨ ɨɞɧɨɜɪɟɦɟɧɧɨ ɧɚɠɢɦɚɬɶ ɦɧɨɝɨ ɤɧɨɩɨɤ ɧɚ ɷɬɨɣ ɩɚɧɟɥɢ ɧɟɪɟɤɨɦɟɧɞɭɟɬɫɹ, ɬɚɤ ɤɚɤ ɧɟɤɨɬɨɪɵɟ ɰɢɮɪɨɜɵɟ ɢɧɮɨɪɦɚɰɢɢ ɛɭɞɭɬ ɧɚɤɥɚɞɵɜɚɬɶɫɹɞɪɭɝ ɧɚ ɞɪɭɝɚ. Ɋɟɤɨɦɟɧɞɭɟɬɫɹ ɜɵɩɨɥɧɹɬɶ ɤɨɧɬɪɨɥɶ ɡɚɞɚɧɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɮɟɪɦɵɩɨɫɬɟɩɟɧɧɨ.2.2.ɇɚɡɧɚɱɟɧɢɟ ɬɢɩɚ ɷɥɟɦɟɧɬɨɜȼ ɨɤɧɟ ɋɨɡɞɚɧɢɟ ɧɨɜɨɝɨ ɩɪɨɟɤɬɚ (ɨɧɨ ɡɞɟɫɶ ɧɟ ɩɪɢɜɨɞɢɬɫɹ, ɧɨ ɟɝɨ ɜɢɞ ɢɪɚɛɨɬɚ ɫ ɧɢɦ ɛɵɥɢ ɪɚɫɫɦɨɬɪɟɧɵ ɜ ɩɭɧɤɬɟ 1.2 ɷɬɚɩɚ 1 ɢɧɫɬɪɭɤɰɢɢ, ɫɦ.
ɫ. 118)ɞɨɥɠɟɧ ɛɵɬɶ ɧɚɡɧɚɱɟɧ ɬɢɩ ɫɯɟɦɵ «ɉɥɨɫɤɚɹ ɲɚɪɧɢɪɧɨ ɫɬɟɪɠɧɟɜɚɹ ɫɢɫɬɟɦɚ».ɉɨɷɬɨɦɭ ɩɪɢ ɧɚɠɚɬɢɢ ɧɚ ɩɚɧɟɥɢ Ɏɢɥɶɬɪɵ ɨɬɨɛɪɚɠɟɧɢɹ ɤɧɨɩɤɢ«Ɍɢɩɵɷɥɟɦɟɧɬɨɜ» ɜɫɟ ɷɥɟɦɟɧɬɵ ɛɭɞɭɬ ɨɬɦɟɱɟɧɵ ɰɢɮɪɨɣ 1. ȿɫɥɢ ɠɟ ɜɵɛɨɪ ɬɢɩɚ ɫɯɟɦɵɧɟ ɛɵɥ ɫɞɟɥɚɧ, ɢɥɢ ɟɝɨ ɧɚɞɨ ɢɡɦɟɧɢɬɶ, ɬɨ ɞɥɹ ɧɚɡɧɚɱɟɧɢɹ ɬɢɩɚ ɷɥɟɦɟɧɬɨɜ ɧɚɞɨɜɨɣɬɢ ɜ ɪɚɡɞɟɥ ɇɚɡɧɚɱɟɧɢɹ, ɤɨɬɨɪɨɦɭ ɛɭɞɟɬ ɫɨɨɬɜɟɬɫɬɜɨɜɚɬɶ ɫɜɨɹɢɧɫɬɪɭɦɟɧɬɚɥɶɧɚɹ ɩɚɧɟɥɶ.ɇɚ ɷɬɨɣ ɩɚɧɟɥɢ ɧɚɠɢɦɚɟɦ ɤɧɨɩɤɭ«ɇɚɡɧɚɱɟɧɢɟ ɬɢɩɨɜ ɤɨɧɟɱɧɵɯɷɥɟɦɟɧɬɨɜ» ɢ ɜ ɩɨɹɜɢɜɲɟɦɫɹ ɨɞɧɨɢɦɟɧɧɨɦ ɨɤɧɟ (ɟɝɨ ɱɚɫɬɶ ɛɵɥɚ ɩɨɤɚɡɚɧɚ ɧɚɫ.
123) ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ ɜɵɛɢɪɚɟɦ: «ɋɬɟɪɠɟɧɶ»; «1. ɋɬɟɪɠɟɧɶ ɩɥɨɫɤɨɣ ɮɟɪɦɵ».ɉɨɞɬɜɟɪɠɞɚɟɦ ɜɵɛɨɪ ɧɚɠɚɬɢɟɦ ɤɧɨɩɤɢ «ɈɄ».Ⱦɥɹ ɩɪɢɞɚɧɢɹ ɜɵɛɪɚɧɧɨɝɨɬɢɩɚ ɷɥɟɦɟɧɬɚ ɫɪɚɡɭ ɜɫɟɦ ɫɬɟɪɠɧɹɦɮɟɪɦɵ ɜɵɞɟɥɢɦ ɜɫɟ ɟɟ ɷɥɟɦɟɧɬɵ.ɋ ɷɬɨɣ ɰɟɥɶɸ ɩɨɞɜɟɞɟɦ ɤɭɪɫɨɪ ɤɫɯɟɦɟ ɮɟɪɦɵ ɢ ɧɚɠɦɟɦ ɩɪɚɜɭɸɤɥɚɜɢɲɭ ɦɵɲɢ. ɉɨɹɜɢɬɫɹ ɨɤɧɨȼɵɛɨɪ ɭɡɥɨɜ ɢ ɷɥɟɦɟɧɬɨɜ (ɡɞɟɫɶɩɪɢɜɟɞɟɧɚ ɟɝɨ ɱɚɫɬɶ).ɇɚɠɢɦɚɟɦ ɤɧɨɩɤɭ «ɂɧɜɟɪɬɢɪɨɜɚɬɶ ɜɵɛɨɪ ɷɥɟɦɟɧɬɨɜ». ɉɪɢ ɷɬɨɦɧɚ ɰɜɟɬɧɨɦ ɞɢɫɩɥɟɟ ɜɫɟ ɥɢɧɢɢ,ɢɡɨɛɪɚɠɚɸɳɢɟ ɫɬɟɪɠɧɢ ɮɟɪɦɵ, ɜɵɞɟɥɹɬɫɹ ɤɪɚɫɧɵɦ ɰɜɟɬɨɦ.ɉɨɞɬɜɟɪɠɞɚɟɦ ɨɩɟɪɚɰɢɸ ɜɵɞɟɥɟɧɢɹ ɧɚɠɚɬɢɟɦ ɜ ɷɬɨɦ ɠɟ ɨɤɧɟ ɤɧɨɩɤɢ«ɈɄ». Ɉɤɧɨ ɢɫɱɟɡɧɟɬ ɢ ɫɧɨɜɚ ɩɨɹɜɢɬɫɹ ɪɚɫɱɟɬɧɚɹ ɫɯɟɦɚ ɮɟɪɦɵ.Ɂɚɤɥɸɱɢɬɟɥɶɧɨɣ ɨɩɟɪɚɰɢɟɣ ɜɵɛɨɪɚ ɬɢɩɚ ɷɥɟɦɟɧɬɨɜ ɹɜɥɹɟɬɫɹ ɧɚɠɚɬɢɟ ɧɚɢɧɫɬɪɭɦɟɧɬɚɥɶɧɨɣ ɩɚɧɟɥɢ ɪɚɡɞɟɥɚ ɇɚɡɧɚɱɟɧɢɹ ɤɧɨɩɤɢ«ɈɄ».