Константинов Н.А., Лалин В.В., Лалина И.И. - Расчёт статически определимых стержневых систем с использованием SCAD (1061793), страница 26
Текст из файла (страница 26)
8.4Ɋɢɫ. 8.5ɉɨɥɭɱɟɧɧɚɹ ɪɚɫɱɟɬɧɚɹ ɫɯɟɦɚ ɟɳɟ ɧɟ ɢɦɟɟɬ ɨɩɨɪɧɵɯ ɫɜɹɡɟɣ, ɲɚɪɧɢɪɨɜ ɢ ɤɧɟɣ ɧɟ ɩɪɢɥɨɠɟɧɚ ɧɚɝɪɭɡɤɚ.ɉɪɨɰɟɞɭɪɵ ɧɚɡɧɚɱɟɧɢɹ ɨɩɨɪɧɵɯ ɫɜɹɡɟɣ, ɜɜɟɞɟɧɢɹ ɲɚɪɧɢɪɨɜ ɢ ɧɚɝɪɭɡɨɤɭɠɟ ɛɵɥɢ ɪɚɫɫɦɨɬɪɟɧɵ ɜ ɪɚɡɞɟɥɚɯ 6 ɢ 7. ɉɨɷɬɨɦɭ ɨɛɪɚɬɢɦ ɜɧɢɦɚɧɢɟ ɬɨɥɶɤɨ ɧɚɫɥɟɞɭɸɳɟɟ:1. ɉɨɫɬɚɜɢɦ ɨɞɢɧɨɱɧɵɣ ɲɚɪɧɢɪ ɜ ɭɡɥɟ 2 (ɧɭɦɟɪɚɰɢɹ ɦɟɫɬɧɨɣ ɫɢɫɬɟɦɵɤɨɨɪɞɢɧɚɬ) ɷɥɟɦɟɧɬɚ 4;2. ȼɜɟɞɟɦ ɡɧɚɱɟɧɢɟ ɡɚɞɚɧɧɨɣ ɧɚ ɪɚɦɭ (ɫɦ. ɪɢɫ. 8.2) ɫɨɫɪɟɞɨɬɨɱɟɧɧɨɣ ɫɢɥɵɜ ɭɡɥɟ 2 (ɧɭɦɟɪɚɰɢɹ ɭɡɥɨɜ ɜ ɨɛɳɟɣ ɫɢɫɬɟɦɟ ɤɨɨɪɞɢɧɚɬ) ɤɚɤ ɫɢɥɭ, ɞɟɣɫɬɜɭɸɳɭɸɩɨ ɧɚɩɪɚɜɥɟɧɢɸ ɨɫɢ X ɜ ɨɛɳɟɣ ɫɢɫɬɟɦɟ ɤɨɨɪɞɢɧɚɬ ɢ ɢɦɟɸɳɭɸ ɡɧɚɤ «ɦɢɧɭɫ»,ɬɚɤ ɤɚɤ ɨɧɚ ɧɚɩɪɚɜɥɟɧɚ ɜ ɩɨɥɨɠɢɬɟɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɨɫɢ X (ɫɦ.
ɩɨɞɪɚɡɞɟɥ 3.7ɢ ɩɪɢɦɟɪ ɪɚɫɱɟɬɚ ɛɚɥɤɢ ɜ ɪɚɡɞɟɥɟ 7).ȼ ɪɟɡɭɥɶɬɚɬɟ ɩɨɥɭɱɢɦ ɪɚɫɱɟɬɧɭɸ ɫɯɟɦɭ ɪɚɦɵ ɞɥɹ ɆɄɗ ɩɨɫɬɪɨɟɧɧɭɸ ɞɥɹɪɚɫɱɟɬɨɜ ɩɨ ɩɪɨɝɪɚɦɦɟ SCAD ɜ ɜɢɞɟ, ɩɪɢɜɟɞɟɧɧɨɦ ɧɚ ɪɢɫ. 8.5 (ɜɚɪɢɚɧɬɫɭɦɦɚɪɧɨɝɨ ɡɚɝɪɭɠɟɧɢɹ ɞɜɭɦɹ ɡɚɞɚɧɧɵɦɢ ɧɚɝɪɭɡɤɚɦɢ).2.2. ȼɬɨɪɨɣ ɫɩɨɫɨɛ ɩɨɫɬɪɨɟɧɢɹ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɪɚɦɵɉɨɫɬɪɨɟɧɢɟ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɪɚɦɵ ɷɬɢɦ ɫɩɨɫɨɛɨɦ ɜɪɭɱɧɭɸ ɧɚɱɢɧɚɟɬɫɹ ɫɜɜɨɞɚ ɟɟ ɭɡɥɨɜ.Ⱦɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɩɪɢ ɪɭɱɧɨɦ ɜɜɨɞɟ ɭɡɥɨɜ ɩɨɥɭɱɢɬɶ ɪɚɦɭ ɫ ɬɟɦɢ ɠɟɧɨɦɟɪɚɦɢ ɭɡɥɨɜ, ɱɬɨ ɢ ɩɪɢ ɟɟ ɩɨɫɬɪɨɟɧɢɢ ɩɟɪɜɵɦ ɫɩɨɫɨɛɨɦ, ɢɯ ɧɚɞɨ ɜɜɨɞɢɬɶɜ ɭɤɚɡɚɧɧɨɣ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɢ (ɫɦ.
ɪɢɫ. 8.2), ɝɞɟ ɨɬɦɟɱɟɧɵ ɢ ɧɨɦɟɪɚ ɭɡɥɨɜ ɢ152ɢɯ ɤɨɨɪɞɢɧɚɬɵ). ɉɨɥɭɱɢɬɫɹ ɫɯɟɦɚ ɪɚɫɩɨɥɨɠɟɧɢɹ ɭɡɥɨɜ, ɩɨɤɚɡɚɧɧɚɹ ɧɚ ɪɢɫ. 8.2,ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɤɨɬɨɪɨɣ ɪɢɫɭɸɬɫɹ ɷɥɟɦɟɧɬɵ ɜ ɩɪɨɝɪɚɦɦɟ SCAD.ɉɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɶ ɜɜɨɞɚ ɷɥɟɦɟɧɬɨɜ ɞɨɥɠɧɚ ɛɵɬɶ ɬɚɤɠɟ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢɫ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨ ɧɚɦɟɱɟɧɧɨɣ ɫɯɟɦɨɣ (ɫɦ. ɪɢɫ. 8.2).ɉɨɫɥɟ ɢɡɨɛɪɚɠɟɧɢɹ ɭɡɥɨɜ ɢ ɨɫɟɣ ɷɥɟɦɟɧɬɨɜ ɪɚɦɵ, ɤɚɤ ɢ ɜ ɩɪɟɞɵɞɭɳɟɦɫɩɨɫɨɛɟ ɩɨɫɬɪɨɟɧɢɹ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɪɚɦɵ ɜɜɨɞɹɬɫɹ ɨɩɨɪɧɵɟ ɫɜɹɡɢ, ɲɚɪɧɢɪ ɧɚɷɥɟɦɟɧɬɟ 4 (ɭɡɟɥ 2 ɜ ɦɟɫɬɧɨɣ ɞɥɹ ɷɥɟɦɟɧɬɚ 4 ɫɢɫɬɟɦɟ ɤɨɨɪɞɢɧɚɬ) ɢ ɜɵɩɨɥɧɹɟɬɫɹɡɚɝɪɭɠɟɧɢɟ ɪɚɦɵ ɢ ɟɝɨ ɫɨɯɪɚɧɟɧɢɟ.ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɜɬɨɪɨɝɨ ɫɩɨɫɨɛɚ ɩɨɥɭɱɢɦ ɪɚɫɱɟɬɧɭɸ ɫɯɟɦɭ ɪɚɦɵ ɞɥɹɆɄɗ ɜ ɬɨɦ ɠɟ ɜɢɞɟ, ɜ ɤɚɤɨɦ ɨɧɚ ɛɵɥɚ ɩɨɥɭɱɟɧɚ ɩɟɪɜɵɦ ɫɩɨɫɨɛɨɦ (ɫɦ. ɪɢɫ.
8.5).Ɉɩɟɪɚɰɢɢ ɩɨ ɜɵɯɨɞɭ ɜ Ⱦɟɪɟɜɨ ɩɪɨɟɤɬɚ, ɜɵɩɨɥɧɟɧɢɸ ɥɢɧɟɣɧɨɝɨ ɪɚɫɱɟɬɚ,ɝɪɚɮɢɱɟɫɤɨɦɭ ɚɧɚɥɢɡɭ ɢ ɩɟɱɚɬɢ ɬɚɛɥɢɰ ɫ ɧɚɣɞɟɧɧɵɦɢ ɭɫɢɥɢɹɦɢ ɭɠɟɜɵɩɨɥɧɹɥɢɫɶ ɜ ɩɪɟɞɵɞɭɳɟɦ ɩɪɢɦɟɪɟ.Ɋɟɡɭɥɶɬɚɬɵ ɪɚɫɱɟɬɚ ɪɚɦɵ ɩɪɢ ɡɚɞɚɧɧɨɦ ɡɚɝɪɭɠɟɧɢɢ ɩɪɢɜɟɞɟɧɵɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɜ ɜɢɞɟ ɷɩɸɪ M (ɪɢɫ.
8.6), Q (ɪɢɫ. 8.7), N (ɪɢɫ. 8.8) ɢ ɜ ɜɢɞɟɬɚɛɥ. 8.1 ɫ ɭɫɢɥɢɹɦɢ (ɤɇ, ɤɇ·ɦ) ɜ ɡɚɞɚɧɧɵɯ ɞɥɹ ɪɚɫɱɟɬɚ ɫɟɱɟɧɢɹɯ.15,02,5M12,5Ɋɢɫ. 8.62,517,5Q7,512,57,5HB = 7,5HA = 12,5Ɋɢɫ. 8.71537,52,5NV2= 17,5V1=2,5Ɋɢɫ. 8.8Ɍɚɛɥɢɰɚ 8.1ɍ ɋ ɂ Ʌ ɂ ə /ɇȺɉɊəɀȿɇɂə/ ȼ ɗɅȿɆȿɇɌȺɏ1-11-22-12-23-13-24-14-25-15-21 - ɫɭɦɦɚɪɧɨɟN-2.5-2.5-2.5-2.5 -17.5 -17.5-7.5 -7.5-7.5-7.5M0-12.5 -12.52.50-15.-2.50-2.e-5 -2.5Q -12.5-12.57.57.5-7.5-7.52.52.52.48 -7.515-3-7.5-15.-17.5ɉɪɢɦɟɱɚɧɢɟ. ȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɡɚɞɚɧɢɟɦ ɤ ɪɚɫɱɟɬɧɨɣ ɪɚɛɨɬɟ 2 (ɫɦ. ɧɚɱɚɥɨ ɪɚɛɨɬɵ)ɩɨɫɥɟ ɩɨɫɬɪɨɟɧɢɹ ɷɩɸɪ ɭɫɢɥɢɣ ɧɟɨɛɯɨɞɢɦɨ ɜɵɩɨɥɧɢɬɶ ɢɯ ɤɨɧɬɪɨɥɶ, ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫɭɤɚɡɚɧɢɹɦɢ, ɩɪɢɜɟɞɟɧɧɵɦɢ ɜ ɩɨɞɪɚɡɞɟɥɟ 4.5 ɩɨɫɨɛɢɹ (ɫɦ. ɬɚɤɠɟ [1, 4]).8.2. ɄɈɇɌɊɈɅɖ ɊȿɁɍɅɖɌȺɌɈȼ ɊȺɋɑȿɌȺ ɊȺɆɕɉɪɟɠɞɟ ɜɫɟɝɨ, ɭɛɟɠɞɚɟɦɫɹ, ɱɬɨ ɩɨɫɬɪɨɟɧɧɵɟ ɷɩɸɪɵ ɭɫɢɥɢɣM , Q, N (ɫɦ.
ɪɢɫ. 8.6 – 8.8) ɭɞɨɜɥɟɬɜɨɪɹɸɬ ɩɪɢɡɧɚɤɚɦ ɩɪɚɜɢɥɶɧɵɯ ɷɩɸɪ(ɫɦ. ɩɨɞɪɚɡɞɟɥɵ 4.2 – 4.4 ɜ ɭɱɟɛɧɨɦ ɩɨɫɨɛɢɢ).ɂɫɩɨɥɶɡɨɜɚɧɢɟ ɭɪɚɜɧɟɧɢɣ ɪɚɜɧɨɜɟɫɢɹɞɥɹ ɤɨɧɬɪɨɥɹ ɪɟɡɭɥɶɬɚɬɨɜ ɪɚɫɱɟɬɚȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɪɟɤɨɦɟɧɞɚɰɢɹɦɢ, ɩɪɢɜɟɞɟɧɧɵɦɢ ɜ ɩɨɞɪɚɡɞɟɥɟ 4.5ɩɨɫɨɛɢɹ, ɫ ɩɨɦɨɳɶɸ ɭɪɚɜɧɟɧɢɣ ɪɚɜɧɨɜɟɫɢɹ ɜɵɩɨɥɧɢɦ ɫɥɟɞɭɸɳɢɟ ɩɪɨɜɟɪɤɢɩɨɥɭɱɟɧɧɵɯ ɪɟɡɭɥɶɬɚɬɨɜ ɪɚɫɱɟɬɚ.ɉɪɨɜɟɪɤɚ ɪɚɜɧɨɜɟɫɢɹ ɜɫɟɣ ɪɚɦɵɊɚɦɚ ɞɨɥɠɧɚ ɧɚɯɨɞɢɬɶɫɹ ɜ ɪɚɜɧɨɜɟɫɢɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɜɫɟɯ ɡɚɞɚɧɧɵɯɧɚɝɪɭɡɨɤ ɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɧɚɣɞɟɧɧɵɯ ɩɪɢ ɪɚɫɱɟɬɟ ɨɩɨɪɧɵɯ ɪɟɚɤɰɢɣ (ɢɯɡɧɚɱɟɧɢɹ ɢ ɧɚɩɪɚɜɥɟɧɢɹ ɨɱɟɜɢɞɧɵ ɢɡ ɩɨɫɬɪɨɟɧɧɵɯ ɷɩɸɪ ɭɫɢɥɢɣ), ɬ. ɟ. ɞɨɥɠɧɵɭɞɨɜɥɟɬɜɨɪɹɬɶɫɹ ɭɪɚɜɧɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ: ¦ X 0 , ¦ Z 0 , ¦ M 0 .154ȼ ɪɚɦɟ ɢɦɟɟɦ ɨɩɨɪɧɵɟ ɪɟɚɤɰɢɢ (ɫɦ.
ɷɩɸɪɵ Q ɢ N ɧɚ ɪɢɫ. 8.7, 8.8):H1 12.5 ɤɇ; V1 2.5 ɤɇ; H 3 7.5 ɤɇ; V3 17.5 ɤɇ.Ɂɧɚɤɢ ɷɬɢɯ ɭɫɢɥɢɣ ɛɟɪɟɦ ɩɨ ɩɪɚɜɢɥɚɦ ɡɧɚɤɨɜ, ɩɪɢɧɹɬɨɦ ɜ ɩɪɨɝɪɚɦɦɟSCAD ɞɥɹ ɜɧɟɲɧɢɯ ɧɚɝɪɭɡɨɤ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɨɫɹɦ ɨɛɳɟɣ ɫɢɫɬɟɦɵ ɤɨɨɪɞɢɧɚɬ(ɫɦ. ɩɨɞɪɚɡɞɟɥ 3.7).ȼ ɪɟɡɭɥɶɬɚɬɟ ɩɨɥɭɱɢɦ:¦ X - 20+12.5+7.5 = 0;¦Z¦ M1(10 2) 2.5 17,5 0;20 1 (10 2)2 7.5 1 17.5 3 0.ȼɫɟ ɭɪɚɜɧɟɧɢɹ ɹɜɥɹɸɬɫɹ ɬɨɠɞɟɫɬɜɚɦɢ. Ɋɚɦɚ ɧɚɯɨɞɢɬɫɹ ɜ ɪɚɜɧɨɜɟɫɢɢ.ɉɪɨɜɟɪɤɚ ɪɚɜɧɨɜɟɫɢɹ ɭɡɥɨɜ ɪɚɦɵ ɩɨ ɦɨɦɟɧɬɚɦɉɪɢ ɷɬɨɣ ɩɪɨɜɟɪɤɟ ɜɫɟ ɭɡɥɵ ɪɚɦɵ ɜɵɪɟɡɚɸɬɫɹ ɪɚɫɫɟɱɟɧɢɟɦ ɫɬɟɪɠɧɟɣɛɟɫɤɨɧɟɱɧɨ ɛɥɢɡɤɨ ɤ ɭɡɥɭ.
Ɍɨɝɞɚ ɩɪɢ ɫɨɫɬɚɜɥɟɧɢɢ ɫɭɦɦɵ ɦɨɦɟɧɬɨɜ ɜɫɟɯɭɫɢɥɢɣ, ɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɭɡɟɥ, ɨɬɧɨɫɢɬɟɥɶɧɨ ɬɨɱɤɢ ɩɟɪɟɫɟɱɟɧɢɹ ɜɫɟɯ ɫɬɟɪɠɧɟɣ,ɩɪɨɞɨɥɶɧɵɟ ɫɢɥɵ ɜ ɫɬɟɪɠɧɹɯ ɦɨɦɟɧɬɨɜ ɧɟ ɞɚɸɬ.ɉɨɩɟɪɟɱɧɵɟ ɫɢɥɵ ɞɚɸɬ ɛɟɫɤɨɧɟɱɧɨ ɦɚɥɵɟ ɦɨɦɟɧɬɵ (ɩɥɟɱɢ ɩɨɩɟɪɟɱɧɵɯɫɢɥ ɨɬɧɨɫɢɬɟɥɶɧɨ ɭɡɥɨɜɨɣ ɬɨɱɤɢ ɛɟɫɤɨɧɟɱɧɨ ɦɚɥɵ). ɉɪɢ ɫɬɪɟɦɥɟɧɢɢɛɟɫɤɨɧɟɱɧɨ ɦɚɥɵɯ ɩɥɟɱ ɤ ɧɭɥɸ ɦɨɦɟɧɬɵ ɨɬ ɩɨɩɟɪɟɱɧɵɯ ɫɢɥ ɬɚɤɠɟ ɫɬɪɟɦɹɬɫɹ ɤɧɭɥɸ ɢ ɢɦɢ ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ.ɂɧɵɦɢ ɫɥɨɜɚɦɢ ɭɪɚɜɧɟɧɢɟ ɪɚɜɧɨɜɟɫɢɹ ɜ ɜɢɞɟ ɫɭɦɦɵ ɦɨɦɟɧɬɨɜɨɬɧɨɫɢɬɟɥɶɧɨ ɭɤɚɡɚɧɧɨɣ ɭɡɥɨɜɨɣ ɬɨɱɤɢ ¦ iɭɡɥɚ Ɇ i0 ɦɨɠɟɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶɫɹɬɨɥɶɤɨ ɞɥɹ ɢɡɝɢɛɚɸɳɢɯ ɦɨɦɟɧɬɨɜ ɜ ɫɟɱɟɧɢɹɯ ɫɬɟɪɠɧɟɣ, ɩɪɢɦɵɤɚɸɳɢɯ ɤɤɚɠɞɨɦɭ ɭɡɥɭ.Ⱦɥɹ ɡɚɞɚɧɧɨɣ ɪɚɦɵ ɷɬɨ ɩɪɨɞɟɦɨɧɫɬɪɢɪɨɜɚɧɨ ɩɪɢ ɟɟ ɫɭɦɦɚɪɧɨɦɡɚɝɪɭɠɟɧɢɢ (ɪɢɫ. 8.9, ɚ). Ɋɚɡɦɟɪɧɨɫɬɶ ɦɨɦɟɧɬɨɜ ɤɇ·ɦ.
ȼɢɞɧɨ, ɱɬɨ ɪɚɜɧɨɜɟɫɢɟɦɨɦɟɧɬɨɜ ɜ ɤɚɠɞɨɦ ɭɡɥɟ ɫɨɛɥɸɞɚɟɬɫɹ.ɚ)2.5ɛ)152.517.57.57.57.52.5157.52.517.5Ɋɢɫ. 8.9155ɉɪɨɜɟɪɤɚ ɪɚɜɧɨɜɟɫɢɹ ɭɡɥɨɜ ɪɚɦɵ ɩɨɞ ɞɟɣɫɬɜɢɟɦɩɨɩɟɪɟɱɧɵɯ ɢ ɩɪɨɞɨɥɶɧɵɯ ɫɢɥɉɪɢ ɩɪɨɜɟɪɤɟ ɪɚɜɧɨɜɟɫɢɹ ɥɸɛɨɝɨ ɩɥɨɫɤɨɝɨ ɭɡɥɚ ɫ ɧɨɦɟɪɨɦ i ɞɨɥɠɧɵɫɨɛɥɸɞɚɬɶɫɹ ɟɳɟ ɞɜɚ ɭɪɚɜɧɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ: ¦iɭɡɥɚ X i0 ¦ iɭɡɥɚ Z i0 . ȼ ɧɢɯɜɨɣɞɭɬ ɩɪɨɞɨɥɶɧɵɟ ɢ ɩɨɩɟɪɟɱɧɵɟ ɫɢɥɵ ɜ ɩɨɞɯɨɞɹɳɢɯ ɤ ɭɡɥɭ ɫɬɟɪɠɧɹɯ.ɇɚ ɪɢɫ. 8.9, ɛ ɷɬɢ ɫɢɥɵ ɩɨɤɚɡɚɧɵ ɞɥɹ ɭɡɥɨɜ, ɪɚɫɫɦɨɬɪɟɧɧɵɯ ɜ ɜɚɪɢɚɧɬɟɫɭɦɦɚɪɧɨɝɨ ɡɚɝɪɭɠɟɧɢɹ ɪɚɦɵ.Ɋɚɜɧɨɜɟɫɢɹ ɥɟɜɨɝɨ ɭɡɥɚ ɩɪɨɜɟɪɢɦ ɚɧɚɥɢɬɢɱɟɫɤɢɦ ɫɩɨɫɨɛɨɦ, ɡɚɩɢɫɚɜɭɤɚɡɚɧɧɵɟ ɭɪɚɜɧɟɧɢɹ (ɫɢɥɵ, ɤɇ):¦ X i 7.5 - 7.5 0; Ɉɲɢɛɤɚ! Ɉɛɴɟɤɬ ɧɟ ɦɨɠɟɬ ɛɵɬɶɫɨɡɞɚɧ ɢɡ ɤɨɞɨɜ ɩɨɥɟɣ ɪɟɞɚɤɬɢɪɨɜɚɧɢɹ.ɉɪɨɜɟɪɤɭ ɪɚɜɧɨɜɟɫɢɹ ɩɪɚɜɨɝɨ ɭɡɥɚ ɜɵɩɨɥɧɢɦ7.5ɝɪɚɮɢɱɟɫɤɢɦ ɫɩɨɫɨɛɨɦ: ɜ ɜɵɛɪɚɧɧɨɦ ɭɞɨɛɧɨɦ ɦɚɫɲɬɚɛɟɩɨɫɬɪɨɢɦ ɦɧɨɝɨɭɝɨɥɶɧɢɤ ɫɢɥ, ɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɭɡɟɥ(ɪɢɫ. 8.10).
Ʉɚɤ ɜɢɞɢɦ, ɦɧɨɝɨɭɝɨɥɶɧɢɤ ɫɢɥ, ɞɟɣɫɬɜɭɸɳɢɯ17.517.5ɧɚ ɭɡɟɥ, ɡɚɦɤɧɭɬ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɭɡɟɥ ɧɚɯɨɞɢɬɫɹ ɜɪɚɜɧɨɜɟɫɢɢ.Ɋɚɜɧɨɜɟɫɢɟ ɥɸɛɨɣ ɨɬɫɟɱɟɧɧɨɣ ɱɚɫɬɢ ɪɚɦɵ7.5ɉɪɟɞɵɞɭɳɢɟ ɩɪɨɜɟɪɤɢ ɪɚɜɧɨɜɟɫɢɹ ɜɵɩɨɥɧɹɥɢɫɶɞɥɹ ɜɫɟɣ ɪɚɦɵ ɢ ɞɥɹ ɥɸɛɨɝɨ ɟɟ ɨɬɞɟɥɶɧɨɝɨ ɭɡɥɚ.Ɋɢɫ. 8.10Ɉɞɧɚɤɨ ɜ ɪɚɜɧɨɜɟɫɢɢ ɞɨɥɠɧɚ ɧɚɯɨɞɢɬɶɫɹ ɥɸɛɚɹɨɬɫɟɱɟɧɧɚɹ ɱɚɫɬɶ ɪɚɦɵ. ɂɧɨɝɞɚ ɛɵɜɚɟɬ ɭɞɨɛɧɨ ɪɚɫɫɦɨɬɪɟɬɶ ɪɚɜɧɨɜɟɫɢɟ ɤɚɤɨɣɬɨ ɤɨɧɤɪɟɬɧɨ ɜɵɛɪɚɧɧɨɣ ɢ ɜɵɪɟɡɚɧɧɨɣ ɱɚɫɬɢ ɪɚɦɵ.q=10 ɤɇ/ɦ7.52.57.5217.5Ɋɢɫ. 8.11ɇɚ ɪɢɫ. 8.11 ɩɨɤɚɡɚɧɚ ɩɪɨɜɟɪɤɚ ɪɚɜɧɨɜɟɫɢɹ ɪɢɝɟɥɹ ɪɚɦɵ, ɨɬɞɟɥɟɧɧɨɝɨ ɨɬɫɬɨɟɤ ɫɟɱɟɧɢɹɦɢ, ɩɪɨɯɨɞɹɳɢɦɢ ɛɟɫɤɨɧɟɱɧɨ ɛɥɢɡɤɨ ɤ ɪɢɝɟɥɸ. ɍɪɚɜɧɟɧɢɹɪɚɜɧɨɜɟɫɢɹ ¦ X 0; ¦ Z 0 ɨɬɫɟɱɟɧɧɨɝɨ ɪɢɝɟɥɹ ɪɚɦɵ ɫɨɛɥɸɞɚɸɬɫɹ.ɉɪɨɜɟɪɤɚ ɪɚɜɧɨɜɟɫɢɹ ɥɸɛɨɝɨ ɛɟɫɤɨɧɟɱɧɨ ɦɚɥɨɝɨ ɷɥɟɦɟɧɬɚ dxɧɚ ɨɫɢ ɫɬɟɪɠɧɹɅɸɛɨɣ ɛɟɫɤɨɧɟɱɧɨ ɦɚɥɵɣ ɷɥɟɦɟɧɬ ɞɥɢɧɨɣ dx, ɡɚɝɪɭɠɟɧɧɵɣ ɩɪɨɞɨɥɶɧɨɣ ɢɩɨɩɟɪɟɱɧɨɣ ɪɚɫɩɪɟɞɟɥɟɧɧɵɦɢ ɧɚɝɪɭɡɤɚɦɢ ɢɧɬɟɧɫɢɜɧɨɫɬɶɸ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ q x ɢq z , ɧɚɯɨɞɢɬɫɹ ɜ ɪɚɜɧɨɜɟɫɢɢ, ɟɫɥɢ ɫɨɛɥɸɞɚɸɬɫɹ ɭɪɚɜɧɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ (1.3)156ɷɬɨɝɨ ɷɥɟɦɟɧɬɚ:ɉɪɨɜɟɪɤɚ ɫɨɛɥɸɞɟɧɢɹ ɷɬɢɯ ɭɪɚɜɧɟɧɢɣ ɹɜɥɹɟɬɫɹ ɩɪɨɜɟɪɤɨɣ ɩɪɚɜɢɥɶɧɨɫɬɢɩɨɫɬɪɨɟɧɧɵɯ ɷɩɸɪ.ȼ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɣ ɪɚɦɟ:1) q x 0 .
ɉɨɷɬɨɦɭ dN / dx 0 . Ɉɬɫɸɞɚ ɫɥɟɞɭɟɬ, ɱɬɨ ɜɫɟ ɷɩɸɪɵ N ɞɨɥɠɧɵɛɵɬɶ ɩɚɪɚɥɥɟɥɶɧɵ ɨɫɹɦ ɫɬɟɪɠɧɟɣ. ɗɬɨ ɫɨɛɥɸɞɚɟɬɫɹ.2) ɇɚ ɷɥɟɦɟɧɬɚɯ 1, 2, 3, 4 q z 0 . ɉɨɷɬɨɦɭ dQ / dx 0 .Ɂɧɚɱɢɬ, ɜɫɟ ɷɩɸɪɵ Q ɧɚ ɭɤɚɡɚɧɧɵɯ ɷɥɟɦɟɧɬɚɯ ɞɨɥɠɧɵ ɛɵɬɶ ɩɚɪɚɥɥɟɥɶɧɵɨɫɹɦ ɫɬɟɪɠɧɟɣ. ɗɬɨ ɫɨɛɥɸɞɚɟɬɫɹ.3) Ʉɚɤ ɜɢɞɧɨ ɢɡ ɬɪɟɬɶɟɝɨ ɭɪɚɜɧɟɧɢɹ, ɩɪɢ ɩɨɫɬɨɹɧɧɨɦ ɡɧɚɱɟɧɢɢ Q ɧɚɷɥɟɦɟɧɬɚɯ 1 – 4 ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɷɩɸɪɵ M ɞɨɥɠɧɵ ɛɵɬɶ ɩɪɹɦɨɥɢɧɟɣɧɵɦɢ ɢɧɚɤɥɨɧɧɵɦɢ ɤ ɨɫɢ ɫɬɟɪɠɧɟɣ ɩɨɞ ɭɝɥɨɦ D i arc tg Qi ( tgD i dM i / dx Qi ), ɝɞɟi – ɧɨɦɟɪ ɷɥɟɦɟɧɬɚ. ɗɬɨ ɬɪɟɛɨɜɚɧɢɟ ɜɵɩɨɥɧɟɧɨ.ɇɚ ɷɥɟɦɟɧɬɟ 5 ɫ ɪɚɜɧɨɦɟɪɧɨ ɪɚɫɩɪɟɞɟɥɟɧɧɨɣ ɧɚɝɪɭɡɤɨɣ ɷɩɸɪɚ Mɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɚɪɚɛɨɥɭ ɜɬɨɪɨɣ ɫɬɟɩɟɧɢ.
ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɷɩɸɪɚ Q5 ɛɭɞɟɬɨɩɢɫɵɜɚɬɶɫɹ ɥɢɧɟɣɧɨɣ ɮɭɧɤɰɢɟɣ. Ɍɚɦ, ɝɞɟ Q5 = 0, ɧɚ ɷɩɸɪɟ M5 ɛɭɞɟɬ ɦɚɤɫɢɦɭɦ.ɗɬɨ ɫɨɨɬɜɟɬɫɬɜɢɟ ɜ ɷɩɸɪɚɯ M5 ɢ Q5 ɢɦɟɟɬɫɹ.ȼɵɩɨɥɧɟɧɧɵɟ ɩɪɨɜɟɪɤɢ ɩɨɡɜɨɥɹɸɬ ɫɞɟɥɚɬɶ ɜɵɜɨɞ, ɱɬɨ ɪɚɫɱɟɬ ɪɚɦɵ ɩɨɨɩɪɟɞɟɥɟɧɢɸ ɭɫɢɥɢɣ ɜ ɫɟɱɟɧɢɹɯ ɟɟ ɫɬɟɪɠɧɟɣ ɢ ɜ ɨɩɨɪɧɵɯ ɫɜɹɡɹɯ ɜɵɩɨɥɧɟɧɩɪɚɜɢɥɶɧɨ.8.3.
ɉɊɂɆȿɊ ɊȺɋɑȿɌȺ ɊȺɆɕ ɋ ɇȺɄɅɈɇɇɕɆ ɋɌȿɊɀɇȿɆ ɆɄɗ ɇȺ ɉɄɋ ɂɋɉɈɅɖɁɈȼȺɇɂȿɆ ɉɊɈȽɊȺɆɆɕ SCADɉɨɫɬɪɨɢɦ ɷɩɸɪɵ ɭɫɢɥɢɣ ɜ ɪɚɦɟ, ɢɦɟɸɳɟɣ ɧɚɤɥɨɧɧɵɣ ɫɬɟɪɠɟɧɶ,ɡɚɝɪɭɠɟɧɧɵɣ ɪɚɜɧɨɦɟɪɧɨ ɪɚɫɩɪɟɞɟɥɟɧɧɨɣ ɧɚɝɪɭɡɤɨɣ (ɪɢɫ. 8.12).202E2DAHAVA360ɨ2HBB3140VB2C8VCɊɢɫ. 8.12ɉɪɢɦɟɱɚɧɢɟ ɤ ɪɢɫ. 8.12. ɇɚ ɫɯɟɦɟ ɪɚɦɵ ɞɨɩɨɥɧɢɬɟɥɶɧɨ ɨɛɨɡɧɚɱɟɧɵ ɨɩɨɪɧɵɟ ɢɲɚɪɧɢɪɧɵɟ ɭɡɥɵ ɢ ɩɨɤɚɡɚɧɵ ɫɨɫɬɚɜɥɹɸɳɢɟ ɨɩɨɪɧɵɯ ɪɟɚɤɰɢɣ, ɤɨɬɨɪɵɟ ɨɩɪɟɞɟɥɟɧɵ ɩɨɫɥɟɪɚɫɱɟɬɚ ɪɚɦɵ ɫ ɩɨɦɨɳɶɸ ɩɪɨɝɪɚɦɦɵ SCAD (ɫɦ. ɪɢɫ. 8.16).157ȼɫɹ ɩɪɨɰɟɞɭɪɚ ɪɚɫɱɟɬɚ ɪɚɦɵ ɩɨ ɩɪɨɝɪɚɦɦɟ SCAD ɨɫɬɚɟɬɫɹ ɬɚɤɨɣ ɠɟ, ɤɚɤ ɜɩɪɟɞɵɞɭɳɟɦ ɩɪɢɦɟɪɟ. Ȼɭɞɟɦ ɫɱɢɬɚɬɶ, ɱɬɨ ɞɜɟ ɩɨɞɝɨɬɨɜɢɬɟɥɶɧɵɟ ɨɩɟɪɚɰɢɢɩɟɪɟɞ ɧɚɱɚɥɨɦ ɪɚɛɨɬɵ ɧɚ ɉɄ ɜɵɩɨɥɧɟɧɵ:1.
ɍɫɬɚɧɨɜɥɟɧɨ, ɱɬɨ ɪɚɦɚ ɫɬɚɬɢɱɟɫɤɢ ɨɩɪɟɞɟɥɢɦɚ.2. ɉɨɫɬɪɨɟɧɚ ɜɪɭɱɧɭɸ ɪɚɫɱɟɬɧɚɹ ɫɯɟɦɚ ɆɄɗ ɪɚɦɵ (ɪɢɫ. 8.13, ɚ).Ɉɫɢ ɆɋɄ ɧɚ ɝɨɪɢɡɨɧɬɚɥɶɧɵɯ ɤɨɧɟɱɧɵɯ ɷɥɟɦɟɧɬɚɯ ɩɪɢɦɟɦɫɨɜɩɚɞɚɸɳɢɦɢ ɫ ɨɫɹɦɢ ɈɋɄ. ɇɚ ɜɟɪɬɢɤɚɥɶɧɵɯ Ʉɗ ɨɫɶ X1 ɛɭɞɟɦ ɫɱɢɬɚɬɶɧɚɩɪɚɜɥɟɧɧɨɣ ɫɧɢɡɭ ɜɜɟɪɯ. Ɍɨɝɞɚ ɨɫɢ Y1 ɢ Z1 ɧɚ ɜɟɪɬɢɤɚɥɶɧɵɯ ɫɬɟɪɠɧɹɯ ɛɭɞɭɬɪɚɫɩɨɥɨɠɟɧɵ ɬɚɤ, ɤɚɤ ɩɨɤɚɡɚɧɨ ɧɚ ɪɢɫ. 8.13, ɛ. ɂɡɨɛɪɚɠɟɧɢɟ ɆɋɄ ɧɚ ɤɚɠɞɨɦɷɥɟɦɟɧɬɟ ɫɯɟɦɵ ɪɚɦɵ (ɫɦ.
ɪɢɫ 8.13, ɚ) ɡɚɦɟɧɟɧɨ ɢɡɨɛɪɚɠɟɧɢɟɦ «ɧɢɠɧɟɣ»ɫɬɨɪɨɧɵ Ʉɗ ɫ ɩɨɦɨɳɶɸ ɩɭɧɤɬɢɪɚ (ɫɦ. ɪɢɫ. 3.10).ɚ)ɛ)10ZX157568H11708121.242062XH22V1Z174YY194318.949V23V3Ɋɢɫ. 8.13Ⱦɚɥɟɟ ɨɬɦɟɬɢɦ ɬɨɥɶɤɨ ɧɟɤɨɬɨɪɵɟ ɨɫɨɛɟɧɧɨɫɬɢ ɪɚɛɨɬɵ ɫ ɩɪɨɝɪɚɦɦɨɣSCAD, ɫɜɹɡɚɧɧɵɟ ɫ ɧɚɥɢɱɢɟɦ: ɧɚɤɥɨɧɧɨɝɨ ɫɬɟɪɠɧɹ, ɧɚɤɥɨɧɧɨɣ ɫɢɥɵ,ɪɚɜɧɨɦɟɪɧɨ ɪɚɫɩɪɟɞɟɥɟɧɧɨɣ ɧɚɝɪɭɡɤɢ ɧɚ ɧɚɤɥɨɧɧɨɦ ɫɬɟɪɠɧɟ.Ɉɫɨɛɟɧɧɨɫɬɶ ɩɨɫɬɪɨɟɧɢɹ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɡɚɞɚɧɧɨɣ ɪɚɦɵ ɫɧɚɤɥɨɧɧɵɦ ɫɬɟɪɠɧɟɦ.
ɂɫɩɨɥɶɡɭɟɦ ɞɥɹ ɩɨɫɬɪɨɟɧɢɹ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵɤɨɦɛɢɧɚɰɢɸ ɞɜɭɯ ɫɩɨɫɨɛɨɜ, ɨɩɢɫɚɧɧɵɯ ɜ ɩɭɧɤɬɟ 2.1 ɷɬɚɩɚ 2 (ɫɦ. ɪɚɡɞɟɥ 6).ȼ ɪɚɡɞɟɥɟ ɋɯɟɦɚ ɨɬɤɪɵɜɚɟɦ ɨɤɧɨ ȼɵɛɨɪ ɤɨɧɮɢɝɭɪɚɰɢɢ ɪɚɦɵ ɢ ɡɚɬɟɦɨɤɧɨ Ɂɚɞɚɧɢɟ ɩɚɪɚɦɟɬɪɨɜ ɪɟɝɭɥɹɪɧɨɣ ɪɚɦɵ. Ɏɪɚɝɦɟɧɬɵ ɩɨɫɥɟɞɧɟɝɨ ɨɤɧɚɛɵɥɢ ɩɪɨɞɟɦɨɧɫɬɪɢɪɨɜɚɧɵ ɩɪɢ ɪɚɫɱɟɬɟ ɲɚɪɧɢɪɧɨɣ ɛɚɥɤɢ (ɫɦ. ɫ. 134) ɢ ɩɪɢɪɚɫɱɟɬɟ ɩɪɟɞɵɞɭɳɟɣ ɪɚɦɵ (ɫɦ. ɫ. 151).Ⱦɥɹ ɩɨɥɭɱɟɧɢɹ ɫɯɟɦɵ ɡɚɞɚɧɧɨɣ ɪɚɦɵ ɫɧɚɱɚɥɚ ɩɨɫɬɪɨɢɦ ɫɯɟɦɭɜɫɩɨɦɨɝɚɬɟɥɶɧɨɣ ɪɚɦɵ (ɪɢɫ. 8.14, ɚ).
ɋ ɷɬɨɣ ɰɟɥɶɸ ɜɜɟɞɟɦ ɢɫɯɨɞɧɵɟ ɞɚɧɧɵɟ,158ɩɨɤɚɡɚɧɧɵɟ ɜ ɩɪɢɜɨɞɢɦɨɣ ɱɚɫɬɢ ɩɨɫɥɟɞɧɟɝɨ ɨɤɧɚ.Ɂɚɬɟɦ ɢɡ ɜɫɩɨɦɨɝɚɬɟɥɶɧɨɣ ɪɚɦɵ ɭɞɚɥɢɦ ɷɥɟɦɟɧɬɵ 2, 6, 8, 9, 10 ɢ«ɍɩɚɤɨɜɤɚ ɞɚɧɧɵɯ». ɋɯɟɦɚ ɩɨɫɥɟ ɭɞɚɥɟɧɢɹ ɭɤɚɡɚɧɧɵɯɜɵɩɨɥɧɢɦ ɨɩɟɪɚɰɢɸɷɥɟɦɟɧɬɨɜ ɢ ɭɩɚɤɨɜɤɢ ɞɚɧɧɵɯ ɢɡɨɛɪɚɠɟɧɚ ɧɚ ɪɢɫ. 8.14, ɛ.ɇɚɤɥɨɧɧɵɣ ɷɥɟɦɟɧɬ ɡɚɞɚɧɧɨɣ ɪɚɦɵ (ɫɦ. ɪɢɫ. 8.12) ɞɨɫɬɪɨɢɦ ɩɨ ɭɡɥɚɦ 6 ɢ7 (ɫɦ.