Главная » Просмотр файлов » 00-1 Программа Введение Геометрические методы

00-1 Программа Введение Геометрические методы (1044894), страница 8

Файл №1044894 00-1 Программа Введение Геометрические методы (Лекционный курс) 8 страница00-1 Программа Введение Геометрические методы (1044894) страница 82017-12-27СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Пример 6. Имеются два смещенных во времени экспоненциальных импульса напряжения:

,

Найти скалярное произведение данных сигналов, а также угол  между ними.

Энергии этих двух сигналов одинаковы:

.

Скалярное произведение

Отсюда cos()=0.819 и =35

Ортогональные сигналы и обобщенные ряды Фурье. Два сигнала u и v называются ортогональными, если их скалярное произведение, а значит, и взаимная энергия равны нулю:

(2.17)

Пусть H - гильбертово пространство сигналов с конечным значением энергии. Эти сигналы определены на отрезке времени
[t1, t2], конечном или бесконечном.
Предположим, что на этом же отрезке задана бесконечная система ортогональных друг другу функций {u0, u1, u2, ..., un, ...}, которые обладают единичными нормами:

(2.18)

Говорят, что при этом в пространстве сигналов задан ортонормированный базис.

Разложим произвольный сигнал s(t)H в ряд:

(2.19)

Представление Error: Reference source not found называется обобщенным рядом Фурье сигнала s(t) в выбранном базисе.

Коэффициенты данного ряда находят следующим образом. Возьмем базисную функцию uk с произвольным номером k, умножим на нее обе части равенства Error: Reference source not found и затем проинтегрируем результаты по времени:

(2.20)

Ввиду ортонормированности базиса в правой части (1.28) останется только член суммы
с номером i=k, поэтому

(2.21)

На геометрическом языке интерпретация формулы Error: Reference source not found такова: коэффициент обобщенного ряда Фурье есть проекция вектора на базисное направление.

Возможность представления сигналов посредством обобщенных рядов Фурье является фактом большого принципиального значения. Вместо того чтобы изучать функциональную зависимость в несчетном множестве точек, мы получаем возможность характеризовать эти сигналы в счетной (но, вообще говоря, бесконечной) системой коэффициентов обобщенного ряда Фурье ck.

Напомним, что гильбертово пространство сигналов, по определению, обладает важным свойством полноты:

- если предельное значение суммы

существует, то этот предел сам является некоторым элементом гильбертова пространства.

В полном функциональном пространстве норма ошибки аппроксимации монотонно убывает с ростом N - числом учитываемых членов ряда. Выбирая N достаточно большим, всегда можно снизить норму ошибки до любой приемлемо малой величины.

Примеры ортогональных базисов.

1. Ортонормированная система комплексных и вещественных гармони­чес­ких функций.

2. Функции Уолша.

3. Кусочно-постоянные функции Хаара.

4. Ортогональные полиномы Лежандра, Чебышева,Лагерра, Эрмита.

2

Программа курса "Анализ биосигналов", 2002 г.

Характеристики

Тип файла
Документ
Размер
970 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее