Главная » Просмотр файлов » Диссертация

Диссертация (1024675), страница 64

Файл №1024675 Диссертация (Теплопроводность твердотельных оптических материалов на основе неорганических оксидов и фторидов) 64 страницаДиссертация (1024675) страница 642017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 64)

Для области низкихтемператур надо иметь в виду существенную зависимость теплопроводности от точечных дефектов, которыми, в сущности, для исследованного номинально чистого кристалла ГГГ являются сверхстехиометрические ионы Gd3+, замещающие существенно отличные по массе и размерам ионы Ga3+ в октаэдрической подрешетке. Точный состав исследованного ГГГ соответствует кристаллохимической формуле {Gd3}[Gd0,03Ga1,965](Ga3)O12.Но различию теплопроводностей Gd3Ga5O12 и Yb3Ga5O12 в области комнатной температуры, составляющему ~25 %, затруднительно дать простое объяснение.

Заметим, что ионы Yb3+вследствие расщепления в кристаллическом поле Yb3Ga5O12 имеют электронные уровни частично не заполненной 4f-оболочки, соответствующие 0, 546, 599 и 624 см-1 [99]. А это определяет возможность резонансного фононного рассеяния [2]. Однако, приведенные значения элек-377тронных уровней соответствуют оптическим модам колебаний, которые, как установили Слек иОливер [99], не вносят существенного вклада в решеточную теплопроводность гранатов в связис их относительно малой скоростью распространения.

В связи с этим известная формула Лейбфрида и Шлеманна для случая гранатовых кристаллов дает значение теплопроводности, завышенное по сравнению с экспериментальными в 10 раз. Но, возможно, не стоит полностью исключать проявления и этого фактора. Несмотря на высокое значение температуры возможногорезонансного рассеяния (из соответствия 1 см-1 → 1.44 К получаем 546 см-1 → 786 К), нужно учитывать тот факт, что величину теплопроводности кристалла определяет вся совокупность разночастотных и сложным образом взаимодействующих фононов. Кроме того, нужно брать во внимание, что расщепляющее влияние на электронные уровни ионов различаются для различныхгранатовых матриц. В связи с этим, по-видимому, нельзя полностью исключить возможностьпроявления резонансного парамагнитного рассеяния на ионах Yb3+ в кристалле GGG.На Рисунке 9.2 представлена концентрационная зависимость величины теплопроводноститвердого раствора Gd3-xYbxGa5O12 при различных температурах.

Обращает на себя внимание строголинейный характер этой экспериментальной зависимости в исследованной области концентраций.32Т = 50 К90k, Вт/(м Кk, Вт/(м К)100k = - 2.023x + 93.9Т = 100 К30k = - 0.464x + 30.2288026702460502204812162020048х, мол.%9Т = 200 Кk, Вт/(м К)k, Вт/(м К)14121620х, мол.%k = - 0.171x + 12.51210Т = 300 Кk = - 0.091x + 8.587804812х, мол.%16206048121620х, мол.%Рисунок 9.2.

Концентрационная зависимость теплопроводности твердого раствораGd3-xYbxGa5O12 для различных температур. Вертикальные рамки соответствуютвариации величины ± 3 %, пунктир – расчет авторов [448]378Еще в 1954 г. А.В. Иоффе и А.Ф. Иоффе [616] получили линейное выражение для влиянияна теплопроводность диэлектрических материалов малого количества примеси:k0N l0= 1n ,kN0 bгде N0, N – общее число атомов и число атомов примеси соответственно; b – постоянная решетки для простых веществ или среднее междуатомное расстояние для многоатомных соединений;l0 – средняя длина свободного пробега фононов в кристалле без примеси; n – некий коэффициент, описывающий искажение структуры.

Поскольку катионы Yb3+, замещающие Gd3+ в додекаэдре, достаточно близки и по массе, и по размеру (см. Таблицу 30), а также слабо различаются по силе связи с кислородом, то n должно быть близко к 1. В дальнейшем [617] А.В. Иоффе иА.Ф. Иоффе продемонстрировали применимость этой формулы и для больших концентрацийпримеси до 30 – 35 %.Таблица 30.Характеристики катионовИонМасса, а.е.м.Ионный радиус r6 , нмGd3+157.250.094Yb3+173.040.081Ga3+69.720.062Рассмотрим возможности использования этого выражения для случая исследованных образцов.Величину b найдем из очевидного соотношения для гранатов, содержащих 160 ионов врасчете на элементарную ячейку: b  3 a 3 / 160 , где а – параметр решетки.

Получим b = 2.28 Å.В качестве значения l0 возьмем полученную выше величину 2.1×10-9 м.Возникает вопрос – что понимать под N0. Есть два варианта. Первый – это первоначальноечисло замещаемых ионов Gd3+, причем находящихся в додекаэдрических позициях. Дело втом, что ионы Yb3+ в зависимости от условий выращивания могут попасть в октаэдрическуюподрешетку (и увеличить значение параметра решетки) или в додекаэдрическую. В последнемслучае параметр решетки уменьшается по сравнению с нелегированным кристаллом GGG. Посведениям, полученным от изготовителей монокристаллов (ИОФРАН), в исследуемых в настоящей работе образцах ионы Yb3+ заняли именно додекаэдрические позиции.

То есть составыкристаллов можно описать следующими формулами:GGG:Yb (6 %)– {Gd2.818Yb0.182}[Gd0.04Ga1.96](Ga3)O12,GGG:Yb (12.9 %) – {Gd2.612Yb0.388}[Gd0.04Ga1.96](Ga3)O12,GGG:Yb (20.3 %) – {Gd2.392Yb0.608}[Gd0.04Ga1.96](Ga3)O12.379В качестве первого варианта будем рассматривать отношение6%-го образца) какNN0NN0(приведем пример для0.182 0.04.32Результаты расчетов 1 +NN0nl0приведены в Таблице 31. Видно, что при таком подходеb(рассеяние только на замещаемых ионах) расчетные величины существенно отличаются от экспериментальных k0/k (превосходят их).Таблица 31.Результаты расчетов (первый вариант)Содержание Yb, %NN01+NN0nl0bk0(300 К, экспер.)k60.08071.7431.0612.90.14932.3751.1620.30.22273.0511.27Рассмотрим другой вариант, будем понимать под N0 число всех ионов в кристалле.

ТогдаN0.182  0.04(для 6%-го образца).N020Результаты нового варианта расчетов в сравнении с экспериментальным соотношениемk0приведены в Таблице 32.kТаблица 32.Результаты расчетов (второй вариант)Содержание Yb, %NN01+NN0nl0bk0(300 К, экспер.)k60.01111.101.0612.90.02141.201.1620.30.03241.301.27Видно, что в этом случае можно говорить о гораздо более удовлетворительном согласииполученных результатов.Что касается степени dk /dx концентрационной зависимости теплопроводности, то в нашемслучае в области комнатной температуры она составляет - 0.091 Вт/(м К ат. %) (Рисунок 9.3),что по абсолютной величине гораздо больше предсказанной теоретически в [448] (из приведенного в [448] графика k(x) следует, что dk /dx ≈ -0.003 Вт/(м К ат.

%).380Следует отметить также, что полученная авторами [448] с помощью их теоретической модели концентрационная зависимость теплопроводности твердого раствора Gd3-xYbxGa5O12 (пунктирна Рисунке 9.2) существенно отличается от соответствующей экспериментальной зависимости.0100200Т, К300dk /dx, Вт/(м К ат.%)0-1-2Рисунок 9.3. Температурная зависимость степени dk /dx концентрационной зависимоститеплопроводности твердого раствора Gd3-xYbxGa5O129.3.

Теплопроводность легированных ортованадатовАнализ влияния примесей на теплопроводность кристаллов ортованадатов Y и Gd показывает, что практикуемые РЗ допанты Y, La, Nd, Tm, Ho проявляются как обычные (механические) дефекты-центры фононного рассеяния. Слабое влияние на теплопроводность YVO4 иGdVO4 ионов Sc3+, Сr3+ свидетельствует о низкой эффективности возникающих точечных дефектов как центров фононного рассеяния. В области комнатной температуры влияние легирующих добавок в основном связано, по-видимому, с изменением макроскопических параметровкристалла – плотности, теплоемкости единицы объема, упругих характеристик. Хотя в пределахточности измерений явной зависимости теплопроводности для области 200 – 300 К от таких параметров, как период и объем кристаллической ячейки, средний радиус ионов в додекаэдрической позиции, соотношение атомной массы основного иона в додекаэдрической позиции иатомной массы «примесных» редкоземельных ионов, выявить не удается.Можно предположить, что главным фактором, определяющим влияние допантов на теплопроводность ванадатов для температур выше 200 К, является концентрация.

В связи с этим состав всех кристаллов ванадатов было предложено [522] описать формулой Re'1-xRe"xVO4, в которой 0 ≤ х ≤ 1, и примесными элементами могут быть один или более видов ионов из ряда РЗЭ иSc3+. Подобный подход позволяет абстрагироваться от конкретных химических элементов.Тогда вполне правомерно рассматривать концентрационные зависимости теплопроводности k(x) ванадатов при условии безразличия к виду допантов. Зависимость теплопроводности kот индекса х для редкоземельных ванадатов Re'1-xRe"xVO4 можно будет считать доказанной, ес-381ли экспериментальные значения теплопроводности вдоль оси с для различных химических составов кристалла будут находиться в окрестности одной функциональной зависимости k = f(x).Вследствие 100 %-ного изоморфного взаимного замещения редкоземельных ионов в ванадатах,функция должна быть приблизительно симметричной относительно ее экстремума.

Указаннымусловиям удовлетворяет функция Холлидея 1/k = (А + Вх + Сх2). Напомним, что величина 1/k = wпредставляет собой удельное тепловое сопротивление материала.На Рисунках 9.4 и 9.5 приведена аппроксимация зависимости теплопроводности исследованных кристаллов ванадата от состава вдоль осей а и с соответственно с помощью функцииХоллидея. Видно, что она вполне удовлетворительна. Это означает, что изменение теплопроводности редкоземельных ванадатов в зависимости от их состава в первую очередь определяется числом примесных редкоземельных ионов, а не их типом, и что разность масс замещающихи замещаемых ионов и наличие рассеивающих центров в кристаллической структуре оказываютвлияние на теплопроводность ортованадатов лишь во втором приближении.k, Вт/(м К)10860,00,2x, ф.е.0,4k, Вт/(м К)Рисунок 9.4.

Характеристики

Список файлов диссертации

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6534
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее