Матем.анализ 3 семестр (Лекции Галкина), страница 7

2013-08-19СтудИзба

Описание файла

Файл "Матем.анализ 3 семестр" внутри архива находится в папке "m3". Документ из архива "Лекции Галкина", который расположен в категории "". Всё это находится в предмете "кратные интегралы и ряды" из 3 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "высшая математика (криволинейные и кратные интегралы)" в общих файлах.

Онлайн просмотр документа "Матем.анализ 3 семестр"

Текст 7 страницы из документа "Матем.анализ 3 семестр"

Свойства ротора.

  1. Линейность

= +

= .

  1. - постоянное векторное поле.

=

+ = .

Теорема Стокса.

Пусть пространственно односвязная область V содержит кусочно-гладкую поверхность с кусочно-гладкой границей .

Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные по своим аргументам до второго порядка включительно в области V.

Тогда справедлива формула Стокса

Замечание. Нормаль к поверхности проведена так, чтобы наблюдатель, находясь на конце вектора нормали, видел бы обход контура , совершающимся в положительном направлении (так, чтобы область, границей которой является контур, при обходе контура находилась бы «по левую руку»).

Доказательство теоремы Стокса.


Как и формула Остроградского – Гаусса, формула Стокса состоит из трех независимых частей (в силу произвольности компонент векторного поля). Докажем одну из этих частей, остальные формулы доказываются аналогично. Докажем - часть формулы Стокса, в которой содержится только компонента P.

Предположим, что поверхность описывается уравнением . Тогда нормаль к поверхности

представляет собой вектор

Отсюда видно, что . Вспомним еще, что .

(на поверхности , поэтому под интегралом стоит частная производная P по y с учетом зависимости z от y на поверхности )

=

Используем формулу Грина для области D с ее границей . Ее можно записать в виде

. Нам понадобится только та ее часть, которая относится к функции P . Продолжаем равенство дальше.

= .

В самом деле, на контуре , а переменные x, y на том и другом контуре те же, так как контур - это проекция контура на плоскость OXY (параллельно оси OZ).

Одна из частей формулы Стокса доказана.

Линейным интегралом векторного поля по дуге L называется криволинейный интеграл .

Линейный интеграл имеет смысл работы векторного поля при перемещении по дуге.

Циркуляцией векторного поля называется линейный интеграл по замкнутому контуру.

.

Вводя эти понятия, можно записать формулу Стокса в «полевой» форме

.

Мы определили ротор векторного поля в декартовой системе координат, однако ротор – это характеристика самого векторного поля Поэтому необходимо дать определение ротора, которое не зависит от выбора системы координат.

Инвариантное определение ротора.

Рассмотрим произвольную точку M в области V. Проведем через нее поверхность , границей которой служит контур . Пусть поверхность и контур удовлетворяют условиям теоремы Стокса. По теореме о среднем для поверхностного интеграла и формуле Стокса получим

.

Здесь, как и ранее - обозначение области и ее площади. Из этого соотношения, стягивая контур к точке M, получим

Это и есть инвариантное определение ротора.

Правая часть формулы – это поверхностная плотность циркуляции векторного поля (энергии в точке M вращения векторного поля или работы векторного поля при вращении вокруг некоторого направления, определяемого вектором ). Левая часть – это проекция ротора на это направление.

Если направление совпадает с направлением ротора и - единичный вектор, то левая часть равна модулю ротора. Поэтому модуль ротора векторного поля равен максимальному значению поверхностной плотности циркуляции векторного поля.

Левая часть достигает максимума при коллинеарности направления и ротора векторного поля. Поэтому направление ротора векторного поля – это то направление, вокруг которого поверхностная плотность циркуляции векторного поля – наибольшая.

Пример. Найти ротор линейной скорости вращения с постоянной угловой скоростью

Векторное поле линейной скорости .

,

Ранее была сформулирована теорема о полном дифференциале для пространственной кривой. В ее доказательстве не хватало только одного пункта – перехода от пункта 3) к пункту 2). Все остальное доказывается аналогично случаю плоской кривой.

Теорема (о полном дифференциале) для пространственной кривой.

Пусть дуга AB лежит на кусочно-гладкой поверхности S, пусть функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны и имеют непрерывные частные производные на S. Тогда следующие четыре утверждения эквивалентны.

  1. не зависит от формы дуги (от пути интегрирования), а зависит только от начальной и конечной точек дуги.

  2. Для любого замкнутого контура

  3. . - полный дифференциал.

Теперь переход от пункта 3) к пункту 2) легко сделать по формуле Стокса.

Криволинейный интеграл от полного дифференциала можно вычислять по формуле

= , так как интеграл не зависит от формы дуги (пути интегрирования).

Криволинейный интеграл от полного дифференциала можно вычислять также по формуле Ньютона – Лейбница

= , где - потенциал векторного поля ( ).

Потенциальное поле и его свойства.

Векторное поле называется потенциальным, если существует такое скалярное поле (потенциал векторного поля ), что = .

Замечание. Если поле - потенциально, то = - полный дифференциал. Тогда - полный дифференциал. Поэтому свойства потенциального поля можно сформулировать и доказать как следствия теоремы о полном дифференциале.

Свойства потенциального поля.

  1. Линейный интеграл потенциального поля не зависит от формы дуги L = , а зависит только от начальной и конечной точек дуги.

В самом деле, = .

  1. Циркуляция потенциального поля равна нулю

Полагая дугу АВ замкнутой (A = B), получаем =

  1. Потенциальное поле является безвихревым, т.е.

Оператор Гамильтона

Оператор Гамильтона .

Применим оператор Гамильтона к скалярному полю .

Оператор Гамильтона представляет собой вектор-оператор. Его можно скалярно или векторно умножить на векторное поле .

Это дифференциальные операции первого порядка над скалярным и векторным полями. От скалярного поля можно взять градиент, от векторного поля можно взять дивергенцию и ротор.

Дифференциальные операции второго порядка.

В результате дифференциальных операций первого порядка мы получаем скалярные и векторные поля .

К ним вновь можно применить дифференциальные операции первого порядка.

От скалярного поля можно взять градиент, получив векторное поле .

От векторных полей можно взять ротор и дивергенцию, получив скалярные поля , и векторные поля , .

Итак, дифференциальные операции второго порядка позволяют получить скалярные поля , и векторные поля , , .

Ранее было показано, что потенциальное поле – безвихревое, т.е. =0.

Покажем, что поле ротора – соленоидальное поле, т.е. =0.

Доказательство.

= .

Три остальных векторных поля связаны друг с другом. Это становится ясным, если рассматривать векторные операции с оператором Гамильтона «набла» аналогично обычным векторным операциям. Однако, эти аналогии не совсем верны, см. подробнее о свойствах оператора «набла» выпуск 7 учебника.

= , =

Известно соотношение . Перенося это правила на действия с оператором «набла», получим

.

Здесь - оператор Лапласа (скаляр – оператор).

.

- произведение скаляр-оператора Лапласа на вектор .

Гармоническое поле.

Скалярное поле называется гармоническим, если

- уравнение Лапласа.

Векторное поле называется гармоническим, если оно потенциальное ( ), а потенциал - гармоническое скалярное поле, т.е. .

Теорема. Для того, чтобы векторное поле было гармоническим, необходимо и достаточно чтобы оно было соленоидальным и потенциальным.

Необходимость. Если векторное поле - гармоническое, то оно потенциальное, т.е. , тогда оно соленоидально, так как .

Достаточность. Если векторное поле потенциальное, то . Так как оно еще и соленоидально, то 0 = . Следовательно, поле потенциально и его потенциал удовлетворяет уравнению Лапласа, поэтому векторное поле – гармоническое.

Так как гармоническое поле потенциально и соленоидально, то его свойства – свойства соленоидального поля и свойства потенциального поля.

Часть 2. Числовые и функциональные ряды

Лекция 10. Числовые ряды и их свойства.

Числовой ряд – это сумма бесконечного количества чисел, выбранных по определенному алгоритму. Обычно задают формулу общего члена ряда .

Примеры

  1. 1+ - бесконечно убывающая геометрическая прогрессия со знаменателем . Ее сумма равна ,

  2. 1+1+1+…..Сумма этого ряда бесконечна.

  3. 1-1+1-1… Сумма этого ряда не существует (ни конечная, ни бесконечная).

При изучении рядов возникает основной вопрос: «Сходится ли ряд». Отвечая на этот вопрос для геометрической прогрессии, мы вычисляем последовательно 1+ , =1+ 1+ - суммы n членов ряда – частичные суммы ряда .

Ряд называется сходящимся, если существует конечный предел последовательности частичных сумм ряда – он называется суммой ряда
.

Ряд называется расходящимся, если предел частичных сумм ряда бесконечен или вообще не существует.

Необходимый признак сходимости ряда. Если ряд сходится, то .

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее