Матем.анализ 3 семестр (Лекции Галкина), страница 3

2013-08-19СтудИзба

Описание файла

Файл "Матем.анализ 3 семестр" внутри архива находится в папке "m3". Документ из архива "Лекции Галкина", который расположен в категории "". Всё это находится в предмете "кратные интегралы и ряды" из 3 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "высшая математика (криволинейные и кратные интегралы)" в общих файлах.

Онлайн просмотр документа "Матем.анализ 3 семестр"

Текст 3 страницы из документа "Матем.анализ 3 семестр"

Пример. Вычислить массу тетраэдра плотностью f(x, y, z) = z, ограниченного плоскостями x+y+z = 1, x+z =1, x+y = 1, y+z =1.

1


Лекция 4. Приложения тройного интеграла.

Замена переменных в тройном интеграле.

Теорема. Пусть с помощью непрерывных функций x = x(u, v, w), y = y(u, v, w), z =z(u, v, w) имеющих непрерывные частные производные установлено взаимно однозначное соответствие пространственно односвязных ограниченных, замкнутых областей Dxyz, Duvw с кусочно-гладкой границей. Тогда

, где - якобиан (определитель Якоби).

Теорема приведена без доказательства.

Цилиндрическая система координат.

M



Вводятся цилиндрические координаты , , h.

x =  cos, y =  sin, z = h. Вычислим якобиан

Пример Вычислить объем пространственного тела, заключенного между цилиндрической поверхностью и эллиптическим параболоидом . .


Сферическая система координат.

x

y

z

r

Сферические координаты , r, .

x = r sin cos

y= r sin sin

z = r cos.

Вычислим якобиан

Пример. Найти массу части шара (с центром в начале координат, радиусом R), находящейся в первом октанте, если плотность вещества шара в каждой точке шара пропорциональна расстоянию этой точки от оси OZ.

Приложения тройного интеграла.

Геометрическое приложение вычисление объема любого пространственного тела.

По свойству 3 тройного интеграла , где – объем области V.

С помощью двойного интеграла тоже можно вычислять объем, но только цилиндрического тела, а не произвольного.

Пример. Вычислить объем пространственного тела, ограниченного эллиптическим параболоидом и шаром ( единичного радиуса с центром в точке (0, 0, 1))

.

Механические приложениявычисление массы пространственного тела, статических моментов, центра тяжести, моментов инерции по формулам, которые выводятся аналогично соответствующим формулам для плоского тела с двойным интегралом ( - плотность вещества тела в каждой точке).

, , . Формулы для моментов инерции запишите сами (например, )

Пример. Определить координаты центра тяжести полушара , По симметрии . ,

Лекция 5 Криволинейные интегралы 1 и 2 рода, их свойства..

Задача о массе кривой. Криволинейный интеграл 1 рода.

Задача о массе кривой. Пусть в каждой точке кусочно-гладкой материальной кривой L: (AB) задана ее плотность . Определить массу кривой.

Поступим так же, как мы поступали при определении массы плоской области (двойной интеграл) и пространственного тела (тройной интеграл).

1. Организуем разбиение области- дуги L на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и (условие А)

2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции

3. Построим интегральную сумму , где - длина дуги (обычно вводятся одни и те же обозначения для дуги и ее длины). Это – приблизительное значение массы кривой. Упрощение состоит в том, что мы предположили плотность дуги постоянной на каждом элементе и взяли конечное число элементов.

Переходя к пределу при условии (условие В), получим криволинейный интеграл первого рода как предел интегральных сумм:

.

Теорема существования10.

Пусть функция непрерывна на кусочно-гладкой дуге L11. Тогда криволинейный интеграл первого рода существует как предел интегральных сумм.

Замечание. Предел этот не зависит от

  • способа выбора разбиения, лишь бы выполнялось условие А

  • выбора «отмеченных точек» на элементах разбиения,

  • способа измельчения разбиения, лишь бы выполнялось условие В

Свойства криволинейного интеграла первого рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если , то = +

Доказательство. Выберем разбиение области L так, чтобы ни один из элементов разбиения ( первоначально и при измельчении разбиения) не содержал одновременно как элементы L1, так и элементы L2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

3. .Здесь – длина дуги .

4. Если на дуге выполнено неравенство , то

Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.

Заметим, что, в частности, возможно

5. Теорема об оценке.

Если существуют константы , что , то

Доказательство. Интегрируя неравенство (свойство 4), получим . По свойству 1 константы можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.

6. Теорема о среднем (значении интеграла).

Существует точка , что

Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на L, получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве L, то в некоторой точке функция должна принимать это значение. Следовательно, .

Вычисление криволинейного интеграла первого рода.

Параметризуем дугу L: AB x = x(t), y = y(t), z =z (t). Пусть t0 соответствует точке A, а t1 соответствует точке B. Тогда криволинейный интеграл первого рода сводится к определенному интегралу ( - известная из 1 семестра формула для вычисления дифференциала длины дуги):

Пример. Вычислить массу одного витка однородной (плотность равна k) винтовой линии: .

.

Криволинейный интеграл 2 рода.

Задача о работе силы.


Какую работу производит сила F(M) при перемещении точки M по дуге AB?

Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).

  1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и (условие А)

  2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции

  3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .

  4. Переходя к пределу при условии (условие В), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):

. Часто обозначают

Теорема существования.

Пусть вектор - функция непрерывна на кусочно-гладкой дуге L12. Тогда криволинейный интеграл второго рода существует как предел интегральных сумм.

.

Замечание. Предел этот не зависит от

  • способа выбора разбиения, лишь бы выполнялось условие А

  • выбора «отмеченных точек» на элементах разбиения,

  • способа измельчения разбиения, лишь бы выполнялось условие В

Свойства криволинейного интеграла 2 рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, используя свойство скалярного произведения, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если , то = + .

Доказательство. Выберем разбиение области L так, чтобы ни один из элементов разбиения ( первоначально и при измельчении разбиения) не содержал одновременно как элементы L1, так и элементы L2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

3. Ориентируемость.

= -

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее