Глава 6 (Учебник - информационные системы), страница 2

2013-09-22СтудИзба

Описание файла

Файл "Глава 6" внутри архива находится в папке "Учебник - информационные системы". Документ из архива "Учебник - информационные системы", который расположен в категории "". Всё это находится в предмете "информационные устройства и системы" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "информационные устройства и системы" в общих файлах.

Онлайн просмотр документа "Глава 6"

Текст 2 страницы из документа "Глава 6"

Вычислительная система на базе матричного процессора осуществляет параллельную обработку данных при полной загрузке процессоров (рис. 6.3б). Такая структура, называемая SIMD (Sin­gle In­struction Multip­le Da­ta) представляет собой мат­­­рицу про­цессор­ных элементов, использую­щих од­но уст­рой­ство уп­ра­вления. Устройство управления формирует единый поток команд ко всем подчиненным процессорам, которые одновременно выполняют одну и ту же операцию, но со своими данными. Анализ подобной архитектуры показывает, что для «квазинезави­­симых задач» она достигает максима­льного быстродействия. Очевидным недостатком СТЗ на базе матричного процессора является их чрезмерная стоимо­сть. Среди известных структур этого типа отметим систему РЕРЕ, использующуюся министерством обороны США для обработки визуальной информации о воздушной обстановке.

Системы на базе конвейерной архитектуры, называемой MISD (Multiple In­struction Single Data), эффективны при обработке массивов данных за длительный период данных. В СТЗ конвейерная (поточная) обработка используется в случае массивов с бо­ль­шим числом элементов поля и числом градаций яркости (рис.6.4). Конвейер состоит из по­следо­ва­тельности про­цессорных элементов, каждый из которых выполняет свою группу операций, а результат появляется на вы­ходе последнего из них. Максимальный эф­фект достигается в случае когда на конвейере одновременно находится p блоков данных, где p - длина конвейера. На прак­тике такая ситуация возможна только на определенном этапе вычислительного процесса, поскольку массивы име­ют конечную размерность и после обработки последнего элемента массива i-ый процес­сорный эле­мент переходит в режим ожидания, в то время как конечный результат будет получен только через p-шагов. В настоящее время известен конвейерный видеопроцессор PIPE для обработки сложных изображений в реальном времени.

Последним достижением в области построения высокоскоростных систем параллельной обработки изображений явилось использование транспьютеров. Транспьютерные системы позволяют на одной и той же аппаратуре формировать раз­личные топологии процессоров («линейка», «кольцо», «дерево», «решет­ка», «гиперкуб» и др.) и различные типы параллельных архитектур (MISD, SIMD, MIMD). Для каждой из задач обработки видео­информации существуют оптимальные топологии, обеспечивающие их эффективное решение. Так, алгоритмам распознавания и идентификации, характеризующимся су­жени­ем потока данных (от большого массива пиксельных данных к данным на уровне объекта) соответствует структура типа «дерево», в корне которого формируется обобщенное описание признаков объектов кадра.

В табл. 6.2 представлены некоторые модели СТЗ, реализованные в рамках рассмотренных схем.

Таблица 6.2. Примеры промышленных СТЗ

Модель

Тип СТЗ

Область применения

Производительность

(тип ЭВМ)

Устройство ввода

Размер кадра, NN

Цена, тыс. $

Cybe Ikon (США)

мощная

космическая съемка

высокая (IBM 370)

сканеры

40004000

До 1000

Magiscan (Англия)

средняя

биология,

ме­дицина

средняя

специальные телекамеры

10241024

До 100

VS - 100 (США)

малая

промышлен­ность

малая (LSI - 11)

промышленные телекамеры

256256

1 … 10

DT - 2871

(США)

персональная

охранные

сис­темы

средняя (PDP, IBM PC)

бытовые теле­ка­меры

512512

0,1 … 1

В робототехнике, как правило, используются достаточно простые схемы СТЗ, поэтому к 2000 году более 70% роботов США оснащались этими средствами. В зависимости от задачи и типа робота наиболее распространены 2D и K2D системы (рис. 6.5). В первом случае, применяются видеодатчики, фор­мирующие плоскую рабочую сцену. Во втором, при сканировании плоской сцены выделяется трехмерная информация. Типичным решением при построении системы управления роботов с СТЗ явилась известная структура «главная ма­шина - сателлит» . Здесь инициализация работы СТЗ осуществляется главной машиной, в качестве которой обычно выступает управляющая ЭВМ робота. Вся обработка видеинформации производится в СТЗ (сателлите), которая затем передает в главную машину соответствующие данные. Чаще всего такими данными являются характеристики рабочей сцены, координаты конкретных объектов и т.д. Описанная структура системы управления получила название двухуровневой: на нижнем уровне производится обработка сенсорной информации, а на верхнем - непосредственное управление манипулятором.

Несмотря на свое подчиненное по отношению к главной машине положение, СТЗ способна решать весьма сложные информационные задачи. Преобразование информации в СТЗ обычно представляется в виде последовательности шести основных этапов [ ]:

  • восприятия или ввода информации (т.е. получения визуального изображения с по­мо­щью видеодатчиков);

  • предварительной обработки изображения (пре­­д­полагает использование методов подавления шума и улу­чшения изображений отдельных деталей сцены);

  • сегментации (обычно, выделения на изображении одного или нескольких интересующих объ­ектов);

  • описания (определения характерных параметров объекта: размеров, формы и т.д., необходимых для его выделения из числа всех, об­разующих сцену);

  • распознавания (как этап обработки информации представляет собой идентификацию объекта, т.е. отнесение его к некоторому классу, например, «болт», «блок двигателей»);

  • интерпретации (выявления принадлежности к груп­пе распознаваемых объектов, например, «на сцене есть несколько гаек»).

В соответствии с тем, какие этапы преобразования информации реализуются конкретной СТЗ, она может быть отнесена к мощной, средней или малой (персональной). Так, задачи, решаемые малыми СТЗ (их иногда называют СТЗ низкого уровня), ограничиваются восприятием и предварительной обработкой информации. (По словам К. Фу подобные задачи можно сравнить с теми, что решает человек, пытающийся найти свое место в темном зале кинотеатра, куда он попал с яркой улицы). В СТЗ среднего уровня решаются задачи сегментации, описания и распознавания отдельных объектов. Алгоритмы, используемые на нижнем и среднем уровнях, основаны на традиционных подходах к обработке информации и разработаны достаточно хорошо, в то время как процессы верхнего уровня, в значительной степени, не определены.

6.2. Основы формирования и передачи изображений

На первом этапе преобразования информации про­изводится непосредственно формирование изображения, заключающееся в определении значений яркости L(x, y) каждой конкретной точки изображения. Собственно изображение представляет собой распределение яркости элементов сцены в пространственной области, сигнал же изображения пре­дставляет собой развертку этого распределения в области временной (рис. 6.6). Данные преобразования реализуются разнообразными телевизионными камерами, используемыми также и для передачи изображения на расстояние.

Р ассмотрим основные вехи в развитии техники передачи изображений. Первые опытные демонстрации изображений на рас­стоянии были проведены практически одновременно в Англия, США и СССР в 1925 -1926 г.г., а начало регулярного вещания датируется 1928 г. Пионерами были Англия и Германия; вещание в СССР открылось в 1931 г. Первая телевизионная система была оптико-меха­нической и содержала 30 строк разложения изображения. Телевизионные передатчики на этом этапе ничем не отличались от радиопередатчиков и так­же работали в диапазоне звукового вещания. Решительный шаг к созданию первой передающей телевизионной трубки «иконоскопа» сделали В.К. Зворыкин (США) и С.И. Катаев (СССР). Зворыкин был командирован в США в 1917 г. А.Ф. Керенским, добился там значительных результатов и обратно не был выпущен уже американцами. Первая электронная система разложения изображения была реализована с его участием в США в 1936 г. и имела стандарт разложения в 343 строки. В том же году в Англии началось вещание по стандарту 405 строк. Автором этого стандарта стал еще один выходец из России И. Шоэнберг. В 1938 г. вещание по электронной системе с 455 строками открылось во Франции, Гер­мании и Италии (441 строка). Весной того же года на импортном оборудовании по стандарту разложения 343 строки начал вещать СССР. Все указанные системы использовали чересстрочную развертку, однако, осенью на ленинградском телецентре было установлено отечественное оборудование с прогрессивным разложением сигнала на 240 строк. Во вре­мя Второй мировой войны работы продолжались только в США, где и был принят в 1943 г. современный стандарт разложения 525 строк 60 полей/с. В Европе первым возобновил вещание СССР в мае 1945 г., и вскоре у нас был принят стандарт 625 строк 50 полей/с. В настоящее время в мире действуют два стандарта телевизионного разложения: 625/50, охватывающий 150 стран с населением 5 млрд. и 525/60 - 55 стран с населением 1 млрд.

6.2.1. Понятие о видеосигнале

Сигнал яркости (он же сигнал изображения Y) является аналоговым многоуровневым сиг­налом. На рис. 6.6 показано распределение яркости в пределах одной строки растра при передаче простого изображения (черной и белой полос на сером фоне).

Полным видеосигналом называется совокупность сигнала изображения и служебных сигналов. Сигнал изображения строится из сигналов яркости и цветности, служебные сигналы представляют собой набор гасящих, синхронизирующих, уравнивающих импульсов, а также импульсов «врезки».

Принципы развертки сигнала в системах черно-белого и цветного телевидения одинаковые, сигнал цветности лишь «подмешивается» в спектр сигнала яркости. Поэтому при анализе развертки видеосигнала не будем уточнять тип сигнала изображения, а рассмотрим этот вопрос при анализе спектра видеосигнала.

Т елевизионное изображение воспроизводится путем последовательного сканирования электронным лучом покрытого электролюминисцирующим веществом экрана. Сканирование происходит слева направо вдоль горизонтальных линий (телевизионных строк) и сверху вниз по строкам. При развертке кад­ра луч пробегает строку за строкой сверху вниз до самого низа экрана, а затем возвращается назад, и вся процедура повторяется со сле­дующим кадром. За счет инерционности глаза в процессе подобного сканирования вызываемые вспышки света сливаются в линии, а затем в полное изображение. В результате полный телевизионный кадр представляет собой совокупность последовательно высвечиваемых линий, передающих пространственное распределение изображения. В большинстве систем используется чересстрочная развертка, когда весь растр разбивается на два полукадра - четный и нечетный. Сначала прочерчиваются нечетные строки, образуя нечетный полукадр, затем луч отклоняется вверх, и прочерчиваются четные. Сигнал яркости, по существу, формирующий черно-белое изображение сцены, образуется во время прямого хода луча развертки на активных строках (рис. 6.7). Во время обратного хода луч гасится, что достигается подачей на прожектор передающей камеры (видеодатчика) и приемной (кинескопа) гасящих импульсов. Длительность стро­­чного гасящего импульса соста­вляет 12 мкс или около 19% периода строки, длительность кадрового гасящего импульса - 1600 мкс, т.е.  8% периода полукадра. В результате действия строчных гасящих импульсов все активные строки на экране разделены тонкими черными промежутками, хорошо видными на близком расстоянии. Кадровые гасящие импульсы образуют широкие промежутки между кадрами, однако, при устойчивом изображении они не видны, т.к. располагаются за пределами поля экрана.

Д иапазон яркости определяет разницу между сигналами, соответствующими черному и белому изображениям. Уровень черного составляет  65 ... 70% полной амплитуды сигнала, уровень белого - 10 ... 15% (рис. 6.8). Следовательно, черное передается высоким уровнем. Этот способ кодирования яркости, получивший название негативная модуляция, позволяет снизить среднюю излучаемую мощность, т.к. обычно на изображе­нии преобладают светлые тона. При этом помехи проявляются в виде черных точек, плохо различаемых глазом.

Все служебные сигналы лежат в области «чернее черного». Амплитуда полного видеосигнала (между уровнями черного и синхронизирующих импульсов) составляет 1 В на нагрузке 75 Ом.

Обеспечение синхронной и синфазной работы всех развертывающих схем видеодатчика и кинескопа достигается подачей строчных (в конце прямого хода каждой строки) и кадровых (в конце каждого полукадра) синхроимпульсов. Стандартом установлена длительность кадро­вых синхроимпу­ль­­сов - 160 мкс, строчных - 4,7 мкс. Для обеспечения качественного воспроизведения сигнала (чтобы не было смещения строк в начале развертки полукадров, т.е. излома вертикальных линий в верхней части экрана), а также обеспечения устойчивос­ти чересстрочной развертки, сигнал синхронизации усложняется путем «врезки » сточной частоты в кадровые синхроимпульсы и передачи уравнивающих импульсов. Длительность всех этих служебных сигналов составляет 2,35 мкс.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее