Глава 6 (Учебник - информационные системы)

2013-09-22СтудИзба

Описание файла

Файл "Глава 6" внутри архива находится в папке "Учебник - информационные системы". Документ из архива "Учебник - информационные системы", который расположен в категории "". Всё это находится в предмете "информационные устройства и системы" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "информационные устройства и системы" в общих файлах.

Онлайн просмотр документа "Глава 6"

Текст из документа "Глава 6"

Системы технического зрения

ГЛАВА 6. СИСТЕМЫ ТЕХНИЧЕСКОГО ЗРЕНИЯ

Человек по визуальному каналу получает более 60% всей информации, регулирующей его взаимодействие с внешней средой. (От глаз к мозгу передаются сигналы по двум из трех миллионов нервных волокон, связанных с мозгом). Это же справедливо и для искусственных сенсорных систем: те из них, которые используют визуальную информацию, обладают наибольшей информативностью. В классе ОЛС особое место занимают системы технического зрения (СТЗ), относящиеся к группе бесконтактных пассивных информационных средств. Для большей части СТЗ характерно отсутствие излучателя; система содержит только приемник собственного излучения объекта. Однако в некоторых случаях излучатель используется, это относится, в частности, к рентгеновским телевизионным системам. СТЗ функционируют в широком диапазоне электромагнитного излучения - от 10-1 м (для телевидения ОВЧ) до 10-9 м. Существенной особенностью систем этого типа является необходимость формирования изображения объекта, представляющего собой рас­преде­ление интенсивности его двумерной функ­ции яркости L(x, y). Заметим, что для большинства систем локации фун­кция распределения интенсивности одномерная - L(z). СТЗ нашли применение в задачах визуального контроля, наблюдения, управления и многих других.

Наибольшее распространение получили системы, работающие в видимом диапазоне волн - 380 … 780 нм. Поскольку, все окружающие предметы поглощают и отражают разное количество света в зависимости от его длины волны, то и спектральная отражательная способность объекта распределяется в видимом диапазоне волн неравномерно. Эта особенность приводит к тому, что поверхность объекта воспринимается разноцветной. Кроме того, и амплитуда отраженного от объекта сигнала, т.е. его яркость неодинакова. Разница в средней яркости соседних структур воспринимается как их контраст. Средняя яркость окружающей среды варьируется в широких пределах: от 10-6 кд/м2 пасмурной ночью, 10-1 кд/м2 в полнолуние, до 107 кд/м2 в солнечный день на снежном поле. Человек способен достаточно уверенно ориентироваться в этом диапазоне яркостей, поскольку его зрение способно воспринимать энергии, крайние значения которых соотносятся как 1: 1011. Однако этот диапазон не является динамическим, т.к. для зрения свойственна адаптация к освещению и при постоянном освещении диапазон воспринимаемых яркостей не превышает 100.

6.1. Основные понятия

С истемы зрения предназначены для восприятия визуальной информации об окружающей среде, обработки и анализа изображений рабочих сцен с целью решения задачи распознавания образов. Обработка визуальной информации, как в живых, так и технических системах заключается в получении некоторого представления сцены - ее изображения и формирование последующего описания. Описание должно, с одной стороны, содержать всю существенную информацию о сцене, а с другой - обеспечивать обработку изображений за необходимое время. В этом смысле, при описании происходит частичное выделение искомой информации, при некоторой потере общей. Баланс этих двух процедур является важнейшей задачей СТЗ. Под распознаванием образов будем понимать процесс, при котором на основании многочисленных характеристик (признаков) некоторого объ­екта определяется одна или несколько наи­более существенных, но недоступных для непосредственного определения его характеристик, в частности его принадлежность к определенному классу объектов. Данное определение является «киберне­тическим» и используется в задачах искусственного интеллекта при анализе любых слож­ных изображений, когда отсутствует ограничение по времени обработки данных. Функционирование робототехнических систем обычно осуществляется в «реальном масштабе времени» и требует разрешения классического про­тиворечия между быстродействием системы и ее объемом памяти. В этом смысле, далеко не все задачи распознавания являются доступными. Так, например, рас­познавание сло­жных трехмерных образов требуют очень высоких ресурсов производительности  1 .. 100 109 MIPS (миллионов операций в секунду). Поэтому, такие задачи «напрямую» в робототехнике не решаются. Здесь традиционным путем является конкретизация начальных условий - позволяющая упростить алгоритмы распознавания. В частности, в большинстве случаев ограничиваются плоскими изображениями объектов. Если требуется восстановить форму объекта, используется несколько изображений, причем таких, на которых видны все точки поверхности и их взаимное положение. Однако и в этом случае, форма объекта может оказаться недоступной для непосредственного рассмотрения. В зависимости от формы различают два класса объектов:

  • объекты, все точки которых можно увидеть под определенными углами зрения;

  • объекты, некоторые точки невидимы независимо от угла зрения.

Так, полное описание выпуклого объекта можно получить на основании двух его изображений (напри­мер, при использовании двух видеодатчиков с правильно выбранным направлением съем­ки рис. 6.1). Под выпуклым понимается объект, для которого касательная плоскость в любой точке поверхности не разрезает эту поверхность.

Способ расположения видеодатчиков зависит от того, необходима ли информация о рельефе объектов. Двумерные неподвижные датчики такую информацию дать не могут, и поэтому в состав СТЗ входят либо несколько двухмерных датчиков, либо сканер - подвиж­ный двумерный дат­чик. (Анало­гично полу­чают двумерную информацию от одномерного датчика, сканируя им рабочую сцену).

Вообще говоря, поверхность реального объекта является сложной и содержит как выпуклые участки, так и вогнутые. При анализе подобных объектов необходимо выбирать бесконечное множество направлений съемки, покрывающих телесный угол 4. Однако и в этом случае возможны области недоступные для наблюдения. Таким образом, даже максимально полное трехмерное описание объ­екта, может оказаться недостаточным для его адекватного распознавания. Поэтому, распознавание образов в СТЗ (как, впрочем, и у человека) основывается на признаках, полученных при анализе частичных изображений.

По назначению СТЗ ус­ловно можно разделить на два класса:

  1. прикладные (пре­дназначенные для обработки ограниченного количества изображений с заданным бы­стро­действием);

  2. универсальные (позволяющие анализировать сложные сцены на основе принципов искусственного интеллекта).

Первые исследовательские СТЗ появились в конце 60-х годов ХХ века. В Стенфордском проекте «глаз - рука» СТЗ со­держала телекамеру на основе видикона, устройство полукадрового ввода изображения 606500 элементов с 16 градациями яркости и ЭВМ типа PDP-6. В 1972 году в Массачусетском Технологическом Институте была разработана опытная система для обработки трех­мерных сцен. Родоначальником промышленных СТЗ явилась фирма SRI International выпус­тившая в 1975 году систему Vici­on Module, обрабатывающую бинарные изображения и став­шую прототипом большинства современных СТЗ. (На основе тех же аппаратно-программных принципов в 1978 году была построена классическая система VS-100, фирмы Machine Intellegence Corp.). Сейчас в промышленности СТЗ используются для контроля качества (первыми определять дефекты на печатных платах предложила фирма Hitachi), отслеживания контуров при механической обработ­ке и дуговой сварке, в задачах сборки и монтажа деталей, конвейерной сортировки, видеонаблюдения и др.

Рынок СТЗ быстро растет. Так, если в 1994 году в США было выпущено около 60000 систем со средней стоимостью 20000 долларов, то к началу XXI века их производство увеличилось в 3,4 раза. В мировом рынке США занимает около 40 %, Японии и Франции по 15 %, Великобритании и Германии по 8 %. Выпуском СТЗ занимает­ся более 200 крупных фирм.

Современные СТЗ классифицируются по трем основным признакам.

  1. По характеру решаемых задач: мощные, средние, малые и персональные.

  1. По структуре вычислительного процесса: однопроцессорные, многопроцессорные, системы на базе матричного процессора, системы поточной обработки.

  1. По типу первичного преобразователя: одномерные или 1D (например, на базе ПЗС-ли­нейки), двумерные или 2D (используются стандартные телекамеры), подвижные двумерные или K2D, трехмерные или 3D (рельефные стереокамеры).

В настоящее время в зависимости от технической задачи и типа датчиков наибольшее распространение получили 5 схем построения СТЗ (табл. 6.1).

Таблица 6.1. Схемы построения СТЗ

Вариант

Тип изображения

Тип вычислительной структуры

Тип датчика

плоское

объемное

последовательная

параллельная

смешанная

цветной

черно-белый

1

+

-

+

-

-

-

+

2

+

+

-

м

-

+

+

3

+

-

-

-

мк

-

+

4

+

+

-

к

-

-

+

5

+

+

-

т

-

+

+

Примечание.

Буквами «м», «мк», «к» и «т» обозначены архитектуры на базе матричного и конвейерного процессоров, транспьютера, а также использующие смешанный «матрично-конвейерный» способ обработки дан­ных.

Н аиболее распространенной схемой СТЗ является однопроцессорная схема, которая строится на базе персонального компьютера. Системы такого рода иногда называются персональными (рис 6.2). Более 80% эксплуатируемых СТЗ относятся к однопроцессорным. В ряде случаев, предварительная обработка изображений осуществляется аппаратно, с помощью специализированных устройств ввода - фреймграбберов. Та­к были организованы, в частности, отечественные системы ти­па «Videoscan» и «Megapixel». Однопроцессорная структура относится к первому поколению СТЗ и имеет существенный недостаток - невозможность обработки сложных (в том числе - цветных) изображений в реальном масштабе времени. Относительно низкое быстродействие этих систем обусловлено невозможностью распараллеливания вычислений и отсутствием специальной шины для передачи изображений. Наиболее распространенным путем повы­шения производительности СТЗ явилась идеология фирмы Data Translation (США), предполагающая не только аппаратную филь­­трацию изображений, но и исполь­зо­вание в устройстве ввода программируемых логических матриц, позволяющих изменять алгоритм обработки в зависимости от типа и характера изображения. В большинстве случаев персональная СТЗ включается в состав системы управления соответствующим оборудованием, а ее обучение осуществляется в ручном или полуав­томатическом режиме оператором.

С целью уменьшения времени на пересылочные операции из памяти в процессор и обратно производится разделение потоков информации, т.е. создаются многошинные структуры. При­мером такой СТЗ является модель DT - 100, фирмы Data Tran­slation. Большинство таких систем имеют две шины, по одной передается видеоинформация, по другой управляющие сигналы (рис. 6.3а). Это позволяет совмещать во времени процесс уп­равления системой и передачу данных. С точки зрения организации вычислений сис­тема включает несколько блоков обработки данных (например, однокристальных) БО1 ... БОN. Каждый блок специализирован на определенный круг задач, которые решаются параллельно. Общее управление работой системы осуществляется персональным компьютером. Такая структура тоже не лишена недостатков, которые связаны с наличием конфликтов на шинах. Их разрешение требует, либо организации жесткой приоритетной дисциплины обращения к шинам, либо использования шинного арбитра и диспетчера заданий. Первый способ дает большой выигрыш по быстродействию, но возможен только для определенного класса задач обработки изображений, второй позволяет анализировать любые изображения, но его реализация ведет к временным потерям на анализ изображения, опреде­ление процедур обмена и выдачу текущих заданий блокам обработки данных.

Одним из условий эффективной реализации процесса параллельной обработки, является наличие у задачи свойства «внутрен­него параллелизма», благодаря которому задачи могут быть разбиты на «квазинезависимые» части. В целом, реализация этой концепции требует слишком большого числа вычислите­льных блоков, и поэтому, на существующих параллельных сис­темах используют смешанный последовательно-па­раллель­ный принцип организации вычислений. (Примером этой структуры СТЗ является модель 79а фирмы Kawa­saki).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее