Глава 6 (Учебник - информационные системы), страница 3

2013-09-22СтудИзба

Описание файла

Файл "Глава 6" внутри архива находится в папке "Учебник - информационные системы". Документ из архива "Учебник - информационные системы", который расположен в категории "". Всё это находится в предмете "информационные устройства и системы" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "информационные устройства и системы" в общих файлах.

Онлайн просмотр документа "Глава 6"

Текст 3 страницы из документа "Глава 6"

В отечественном телевизионном стандарте принята чересстрочная развертка видеосигнала, которая по ГОСТ 7845-79 характеризуется следующими параметрами:

  • числом строк разложения в одном кадре Z (Z = 625 твл - телевизионных линий);

  • числом кадров в секунду nк (nк = 25);

  • форматом кадра K (K = 4/3);

  • периодом развертки кадра Tк (Tк = 40 мс);

  • периодом развертки полукадра (поля) Tп (Tп = 20 мс);

  • периодом развертки строки Tс (Tс = 64 мкс). При этом Тс = Тк/Z.

С ледовательно, частота развертки полного кадра fк равна: fк = 1/Tк = 25 Гц, частота развертки поля fп = 2 fк = 50 Гц, и, наконец, частота строчной развертки fс = 1/Tс = 15625 Гц.

Номинальное число элементов разложения N по полю зрения телекамеры (при передаче черно-белого сигнала и хорошей четкости изображения) определяется выражением:

N = K Z2 или 4/3 (625)2 = 520833

Частотный спектр видеосигнала характеризуется верхней fв и нижней fн граничной частотой и зависит как от характера изображения, так и от параметров развертки. Нижняя граничная частота соответствует изображению, имеющему минимальное чис­ло изменений яркости. Период этого импульсного сигнала равен периоду полукадра Tп, а его частота - частоте кадровой развертки fн = fп (рис. 6.9а). Следовательно, fп = 50 Гц. (Время смены полукадров в телевизионном стандарте равно 0,02 с, что существенно меньше инер­ционности глаза, составляющей  0,1 ... 0,15 с). Верхняя граничная частота fв соответствует изо­бражению, содержащему максимальное число эле­ментов, яркость которых позволяет раздельно передать камера (рис. 6.9б). Получим fв = N fк = 52083325  13 МГц. Это значение fв применяется при прогрессивной (построчной) развертке. Передача столь широкополосного сигнала вызывает значительные технические трудности, для уменьшения которых, собственно, и была предложена чересстрочная развертка. В этом случае, значение fв уменьшается вдвое:

fв = K Z2 fн/4 = 6,5 мГц

Таким образом, чересстрочная развертка вдвое су­жает спектр сигнала, что весьма существенно при передаче изображений по каналам связи. Обычно в расчетах полагают fв = 6,0 Мгц. При увеличении частоты смены кадров или строк разложения, увеличивается верхний частотный предел fв и расширяется частотный спектр сигнала изображения. (Геометрические размеры каждого элемента разложения d соответствуют высоте строки, которая, в свою очередь, определяется апертурой - размером развер­ты­вающего электронного луча).

Разрешающая способность канала передачи изображений определяется числом строк разложения и шириной спектра видеосигнала. Для принятого в нашей стране стандарта 625 строк и 50 полей 1 МГц частоты видеосигнала соответствует разрешающей способности по горизонтали 78 твл. Следовательно, максимальная разрешающая способность телевизионного изображения по горизонтали ограничена величиной 786,5 = 507 твл. (Обычно считают, что ширина спектра ограничена 6 МГц и тогда 786 = 468 твл). В ряде европейских стран изображение занимает лишь 575 строк из 625. Остальные используются для передачи телетекста. Спектр сигнала яркости при этом соответствует 5 МГц.

П олный телесигнал передается путем АМ несущей частоты, следовательно, его частотный спектр содержит несущую частоту fнес и две боковые полосы. (В отличие от изображения сигнал звукового сопровождения в телевидении обычно пред­ставляет собой ЧМ колебание несущей частоты). Как известно, ширина спектра такого сигнала определяется удвоенной максимальной частотой модулирующего сигнала fв. Поэтому, радиосигнал изображения в отечественном вещании занимает полосу 13 МГц. Для АМ сигнала характерно, что каждая из боковых частот содержит полную информацию о сигнале. Следовательно, без потери качества можно одну из них подавить, сузив, тем самым, и спектр сигнала. Обычно, частично (для сохранения несущей частоты) подавляется нижняя боковая частота (1,25 МГц), верхняя же передается полностью (рис. 6.10). Применительно к телевещанию, это позволяет увеличить число передаваемых каналов в отведенном диапазоне волн. Во всех случаях АМ fнес должна в несколько раз превышать максимальную час­тоту fв спектра модулирующего сиг­нала. Например, в отечественном стандарте наименьшая несущая частота соответствует I частотному каналу и равна 49,75 МГц.

При передаче изображений в телевещании используется 5 полос частот: в диапазоне метровых волн УКВ (I ... III) - размещается 12 каналов, в диапазоне дециметровых волн УКВ (IV и V) - размещается более 73 радиоканалов. Распределение телевизионных каналов по частотам приведено в табл. 6.3.

Таблица 6.3. Шкала распределения радиочастот в телевещании

f, МГц

48,5 ...66

76 ...100

174...230

470 ... 582 ... 960

Полосы частот

I

II

III

IV

V

Телевизионные каналы

I … XII

Перспективные системы телевещания - телевидение высокой четкости используют полосу пропускания до 60 МГц, при этом частота кадров увеличена до 100 Гц. Соответственно, изменены и другие характеристики сигнала: Z = 1125, K = 16/9.

При передаче цветного изображения сигнал цветности должен встраиваться в спектр сигнала яркости.

6.2.2. Принципы кодирования цвета

Термин «цвет» даже в научной литературе имеет несколько определений. Одним из наиболее удачных является формулировка Э. Шредингера, определившего цвет как «свойство спектрального состава излучения, общего излучениям, визуально неразличимым для человека». Подобное представление лежит в основе цветовых измерений (колориметрии) и теории цветного зрения. Особенности спектрального состава излучения изучал в XVIII в. И. Ньютон, определивший отдельные составляющие солнечного света. Основные положения теории цветового зрения были заложены М. Ломоносовым, экспериментально установившим, что все цвета могут быть получены путем сложения трех основных (первичных) цветов. Проведенные в XIX в. исследования Г. Гельмгольца и некоторых других ученых показали, что чувствительность S зрительных клеток к свету различных длин волн неодинакова (рис. 6.11). Многочисленные физиологические эксперименты привели к эмпирической зависимости:

L = 0,59 G + 0,3 R + 0,11 B

где G, R и B - соответственно зеленая, красная и синяя составляющие спектра излучения. Яркость L, как и ранее, характеризует амплитуду черно-белого изображения. Поскольку представления о черном и белом весьма субъективны, возникла необходимость централизовано установить понятие «белого». Согласно принятому международному определению белым цветом называется цвет свечения абсолютно черного тела при температуре 6500 0С.

Формула, определяющая яркость как взвешенную сумму компонентов цветности, лежит в основе наиболее известной модели аддитивного цветового синтеза, применяемой в светоизлучающих системах (в том числе - цветном телевидении). Согласно аддитивной модели, известной также как цветовая система RGB, любой цвет получается наложением красного, зеленого и синего цветов спектра. Так, например, на экране монитора цвет и яркость каждой точки задается интенсивностью R, G и B составляющих, использующихся при управлении мощностью трехкомпонентной электронной пу­шки. Для наглядного представления цветовой системы RGB ис­пользуется цве­товой куб, где чистые цвета образуют вершины куба, а оттенки серого лежат на главной диагонали (рис. 6.12). Однако при всей наглядности этой схемы она имеет два существенных недостатка. Во первых, в системе RGB невозможно получить все цвета путем сложения основных составляющих. Во вторых, цветопередача является аппаратно-зависимой (например, от люминофора). В частности, экспериментально установлено, что методика RGB недействительна в сине-зе­леной (450 ... 550 нм) области. Это связано с тем, что для имитации спектрального цвета в данной области требуется отрицательная крас­­ная составляющая (рис. 6.13). Действительно, согласно цветовому кубу справедливо равенство:

Голубой = Синий + Зеленый

На самом деле, эмпирически установлена спра­ведли­вость другого выраже­ния:

Синий + Зеленый = Голубой + Красный,

что и приводит к появлению отрицательной крас­ной компоненты:

Голубой = Синий + Зеленый - Красный.

Ясно, что в природе не существует отрицательных составляющих цвета, и, следовательно, в модели аддитивного цветового синтеза голубой цвет может быть получен то­лько искусственно.

Модель RGB используется для описания источников излучения. Если же объект освещается, он является приемником света, отражающим волны. Большинство предметов отражают либо солнечные лучи, либо лучи других источников освещения. Так, например, если объект кажется красным, это означает, что он отражает только длинные волны, поглощая все остальные. Для описания приемников света используется модель субтрактивного цветового синтеза, называемая также CMYK (Cyan - голубой, Magenta - пурпурный, Yellow - желтый и Black - черный). Модель CMYK позволяет получить на бумаге большинство необходимых цветов и широко используется в полиграфии и других системах печати. Важной особенностью такого подхода является возможность кор­ректировать цвета изображений. Так, если изображение (фотография) получилось излишне синим, то необходимо увеличить желтую составляющую, поскольку желтый цвет поглощает синюю ком­понен­ту. Аналогично, зеленый цвет корректируется увеличением пурпурной составляющей. На практике, при технической реализации цветной печати изображение раскладывают на голубую, пурпурную и желтую составляющие, образующие на бумаге точечный растр. Затем для увеличения контрастности в растр добавляют чисто черную составля­ющую, которая оказывается гораздо насыщеннее, чем компонента, образованная сложением C, M и Y цветов. Белый цвет соответствует нулевым значениям всех составляющих C, M, Y и K, в отличие от RGB, где все компоненты соответствуют максимуму.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее