Лекции, страница 9

2013-09-22СтудИзба

Описание файла

Документ из архива "Лекции", который расположен в категории "". Всё это находится в предмете "механика жидкости и газа (мжг или гидравлика)" из , которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "механика жидкости и газа (мжг или гидравлика)" в общих файлах.

Онлайн просмотр документа "Лекции"

Текст 9 страницы из документа "Лекции"

Функция тока и . Если, как принято в условии, , то и . Примем для упрощения выкладок момент диполя , тогда и . Складывая потенциалы и функции тока, получаем и .

Найдем линии тока, для чего приравняем функцию тока постоянной: , откуда

(6.33)

Из чего следует, что линии тока течения представляют семейство кривых третьего порядка. Найдем нулевую линию тока, т.е. линию, для которой . Это дает два уравнения:

и ,

т.е. линия тока представляет собой ось x-ов и окружность единичного радиуса с центром в начале координат (см. рис. 6.12). Это позволяет рассматривать окружность как твердую границу и течение вне ее, что приводит к задаче обтекания бесконечно длинного цилиндра.

Рис. 6.12

Покажем, что на достаточно большом удалении от цилиндра скорость направлена вдоль оси x и равна . Найдем проекции скоростей и .

Имеем: ,

Откуда ;

аналогично .

Для дальнейшего удобно перейти к полярным координатам, имея в виду, что и . Подстановка этих значений в выражения для и дает:

(6.34)

(6.35)

Перейдем к пределу. При получаем и , т.е. то, что и требовалось доказать.

Точки B и A, показанные на рис. 6.12, являются так называе­мыми особыми либо критическими точками, т.к. скорость в них обра­щается в нуль. Покажем, что это действительно так, для чего запишем выражение для потенциала скорости в полярных координатах:

;

(6.36)

Найдем проекции скорости в произвольной точке на произвольной линии тока (рис. 6.13). Имеем:

;

.

На поверхности цилинд­ра и , т.е. обтекание безотрывно. Компонента . В общем случае, когда ,

(6.37)

Рис. 1.13

Знак «минус» указывает на то, что направление скорости на верхней половине цилиндра противоположно положительному направлению отсчета угла . В точках B и A ( ) скорости равны нулю, т.е. действительно эти точки являются критическими.

6.10. Применение теории функций комплексного переменного к изучению плоских потоков идеальной жидкости.

Рассматриваемый ниже метод относится к числу наиболее эффективных способов анализа плоских потоков. Вернемся к полученным выше (см. 6.15) соотношениям Коши-Римана. Они показыва­ют, что комплексная комбинация этих двух функций (т.е. j и ) от действительных переменных x и y, т.е. , является аналитической функцией комплексного переменного . Другими словами, эти условия показывают, что существует функция комплексной переменной либо просто W, вещественная и мнимая части которой j и соответственно, т.е.

(либо ).

Функция называется аналитической в данной точке, если она дифференцируема как в самой точке , так и в некоторой ее окрестности. В гидромеханике функция называется комплексным потенциалом. Следует отметить, что теория аналитических функций является одной из наиболее разработанных ветвей классической математики. Обстоятельное изучение этого материала далеко выходит за рамки курса. Ограниченный объем данного пособия позволяет привести лишь весьма краткие сведения, необходимые для уяснения самой общей идеи метода. При необходимости подробное и обстоятельное изложение его можно найти в книге: Фильчаков П.Ф. Приближенные методы конформных отображений. - К.: Наукова думка, 1964. - 530 с.

Интересующиеся приложениями теории функций комплексного переменного для решения технических задач, в частности, задач гидромеханики, могут обратиться к книге: Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. - М.: Наука, 1987. - 688 с.

Как показывается в теории функций комплексного переменного, производная от комплексного потенциала по комплексному же переменному имеет вид

(6.38)

Это выражение называется комплексной скоростью. Модуль этой величины дает саму скорость, т.е.

(6.39)

Рассмотрим некоторые примеры.

Пример 6.6. Пусть течение задано комплексным потенциалом , где a - действительное число. Имея в виду, что и , можно записать:

Разделяя действительную и мнимую части, получаем:

и .

Этот поток рассмотрен выше в примере 6.2. Обратим лишь внимание на то, что с помощью комплексного потенциала результат достигается более коротким путем.

Найдем комплексную скорость. Имеем:

;

; ;

;

,

т.е. частицы движутся по гиперболическим линиям тока со скоростью .

6.11. Конформные отображения.

Геометрические преобразования, при которых величины углов между любыми двумя линиями, содержащимися в преобразуемой фигуре, не изменяются, называются конформными преобразованиями или отображениями. Широкое применение конформные отображения находят в гидромеханике. Обсудим лишь общую идею метода.

Рассмотрим две координатные сетки на плоскостях комплексных переменных и (рис. 6.14).

В плоскости z имеется какая-то фигура (A), которую необходимо отобразить на плоскость . Эта операция может быть выполнена при одном непременном условии: должно быть известно соотношение, устанавливающее связь и z, т.е. . Эта зависимость носит название отображающей функции. Предположим, что она нам известна. Тогда, задавшись какой-то произвольной точкой на контуре A, например 1, можно вычислить , и подставив это значение в отображающую функцию, найти значение и соответствующую точку на плоскости (1'). Повторив эти операции для точек 2, 3 и т.д., найдем 2', 3', ... . В результате этих действий получим контур B на плоскости , т.е. контур A отобразился в контур B. Такое преобразование получило название конформного. В теории функций комплексного переменного доказывается, что модуль производной характеризует изменение линейных размеров области при преобразовании, а аргумент ее определяет угол поворота радиуса-вектора. При этом преобразование, осуществляемое аналитической функцией, сохраняет эти углы во всех точках, где производная отображающей функции отличается от нуля. Теперь вопрос может быть сформулирован таким образом: какие же практические преимущества можно получить, используя метод конформных отображений?

Рис. 6.14

Остановимся лишь на одном, но крайне важном случае. Как известно, одной из главных задач расчета крыля является определение его подъемной силы. Для ее нахождения необходимо знать скорости частиц в каждой точке потока, обтекающего крыло. Крыловой профиль - достаточно сложная фигура, и рассчитать скорости теоретическим путем не представляется возможным. Но, как было показано выше, расчет легко выполняется для цилиндра. Поэтому задача была бы решена, если бы удалось заменить обтекание крылового профиля обтеканием цилиндра. Это можно сделать с помощью конформного отображения.

Рассмотрим рис. 6.15. Конформно отобразив фигуру, заштри­хованную на рис. 6.15а (внешность профиля) на заштрихованную фигуру рис. 6.15б (внешность окружности) мы сводим задачу обтекания профиля к задаче обтекания цилиндра. Рассчитав скорость в любой точке цилиндра, обратным переходом можно найти скорость в соответствующей ей точке профиля.

а) б)

Рис. 6.15

Нахождение вида отображающей функции, позволяющей осуществить требуемое конкретными условиями рассматриваемой задачи конформное отображение, является отдельным специальным вопросом. Решение рассмотренной выше задачи было найдено Н.Е.Жуковским. Отображающая функция в этом случае имеет вид

(6.40)

и носит название функции Жуковского.

7. ГИДРОДИНАМИКА ИДЕАЛЬНОЙ ЖИДКОСТИ

В механике жидкости понятию «гидродинамика» придается весьма широкий смысл. В настоящем пособии этот термин будет использоваться в его классическом значении, как раздел курса, который, в отличие от кинематики, рассматриваюшей движение жидкости без учета причин, обусловивших его, изучает как само движение, так и причины, приводящие к его возникновению. Движение жидкости вызывается действием сил, а если иметь в виду, что давление есть частное от деления силы на площадь, то можно считать, что причиной возникновения движения частиц с какими-то скоростями является разность (перепад) давлений. Таким образом, для расчета течений необходимо иметь уравнение, связывающее давление в точке со скоростью движения частицы.

7.1 Уравнения движения идеальной жидкости.

Уравнения движения идеальной жидкости можно получить из уравнений движения в напряжениях, положив в них все производные от равными нулю и заменив нормальные напряжения давлениями, имея в виду, что . Таким образом, урав­нения гидродинамики принимают вид

(7.1)

либо в векторной форме

(7.2)

Система (7.1) называется системой дифференциальных уравнений Эйлера для гидродинамики, она связывает давления и скорости в движущейся жидкости. Следует помнить, что выражения в правой части уравнений системы являются полными либо субстанциональными производными. Наличие конвективных членов ускорения приводит к тому, что система является нелинейной, содержащей четыре неизвестных: три проекции скорости и давление. Проекции единичных массовых сил обычно известны из постановки задачи.

Три уравнения (7.1) плюс уравнение неразрывности образуют замкнутую систему.

7.2 Преобразование Громеки-Лэмба.

Рассмотрение теоремы Гельмгольца о движении жидкой частицы показывает, что жидкость, как любое материальное тело, может участвовать в поступательном и вращательном движениях.

Следует обратить внимание на то, что для совершения работы в современных технических устройствах может использоваться только энергия поступательного движения. Энергия же вращательного (вихревого) движения полностью теряется, рассеивается в окружающей среде, превращаясь в теплоту.

Система уравнений Эйлера (7.4) не учитывает факт существо­вания этих двух движений, что в определенной степени обедняет ее. Поэтому целесообразно использовать преобразование, позволяющее учесть эту особенность движения жидких частиц, называемое преобразованием Громеки-Лэмба. Формально оно сводится к тому, что в выражение для ускорения вводятся члены, характеризующие вращение жидких частиц.

Рассмотрим лишь одну компоненту:

(7.3)

Прибавим и вычтем в конвективной части ускорения выражение

Скомпонуем члены с учетом знаков:

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее