85681 (Классификация групп с перестановочными обобщенно максимальными подгруппами), страница 6

2016-07-30СтудИзба

Описание файла

Документ из архива "Классификация групп с перестановочными обобщенно максимальными подгруппами", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85681"

Текст 6 страницы из документа "85681"

б) Одна из подгрупп , является нильпотентной, а другая - группой Шмидта.

Пусть например, - группа Шмидта и - нильпотентная подгруппа. Из следствия следует, что - группа простого порядка , - циклическая группа и максимальная подгруппа из нормальна в . Так как - нильпотентная группа, то . Из того, что следует, что - нормальная подгруппа в группе . Значит, ввиду леммы Error: Reference source not found, - нормальная максимальная подгруппа в группе и поэтому . Следовательно, - группа простого порядка .

Из того, что - нильпотентная подгруппа и - циклическая группа следует, что - нормальная подгруппа в . Следовательно, - нормальная подгруппа в группе , т.е. - группа типа (7).

2. Предположим теперь, что - ненильпотентная группа.

Из следствия следует, что , где - группа простого порядка и - циклическая группа, которая не является нормальной в группе , но максимальная подгруппа из нормальна в . Так как - характеристическая подгруппа в и - нормальная подгруппа в , то - нормальная подгруппа в . Из того, что - нормальная максимальная подгруппа в группе , следует, что - группа простого порядка .

Покажем теперь, что - нормальная подгруппа в группе . Так как , то - -максимальная подгруппа группы . Пусть - -максимальная подгруппа группы . Тогда - -максимальная подгруппа группы для любого . По условию - подгруппа группы . Поскольку порядок

делит , то . Таким образом для любого , т.е. . Так как - нормальная подгруппа в группе , то , и поэтому . Отсюда получаем, что - нормальная подгруппа в группе . Поскольку - -максимальная подгруппа, то согласно следствия, - нильпотентная группа, и поэтому . Это означает, что - нормальная подгруппа в группе . Таким образом, группа является группой типа (7).

Итак, - группа одного из типов (1) - (7) теоремы.

Достаточность. Покажем, что в группе каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы .

Пусть - группа типа (1) или (2). Ввиду леммы Error: Reference source not found, в группе каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы .

Пусть - группа типа (3). Тогда и , где - группа простого порядка , - нециклическая группа и все ее максимальные подгруппы, отличные от , цикличны. Пусть .

Так как , то , и поэтому в группе существует нильпотентная максимальная подгруппа, индекс которой равен . Пусть - произвольная нильпотентная максимальная подгруппа группы с индексом . Тогда . Так как - максимальная подгруппа группы , то - нормальная подгруппа в , и следовательно,

Значит, - единственная нильпотентная максимальная подгруппа, индекс которой равен .

Пусть - произвольная максимальная подгруппа в и - максимальная подгруппа в . Пусть - произвольная максимальная подгруппа в , - максимальная подгруппа в , - максимальная подгруппа в .

1. Если и - нильпотентные подгруппы группы индекса , то . Так как - максимальная подгруппа группы , то - нормальная подгруппа в , и следовательно, перестановочна с .

2. Предположим, что является ненильпотентной подгруппой. Так как , то . Из того, что , следует, что - циклическая подгруппа. Так как , то - максимальная подгруппа группы , и поэтому - нормальная подгруппа в группе . Из того, что , следует, что . Следовательно, - нильпотентная максимальная подгруппа группы , индекс которой равен . Если - максимальная подгруппа группы такая, что , то - -подгруппа, и поэтому - нильпотентная подгруппа. Пусть - произвольная максимльная подгруппа группы , индекс которой равен . Так как , то . Следовательно, для некоторого мы имеем . Без ограничения общности можно полагать, что . Так как - максимальная подгруппа циклической группы , то , и поэтому - нильпотентная максимальная подгруппа. Следовательно, - группа Шмидта. Значит, и поэтому , где - циклическая -подгруппа.

Если , то . Так как - подгруппа циклической группы , то . Из того, что - максимальная подгруппа группы , следует, что - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в группе и поэтому . Это означает, что подгруппа перестановочна со всеми 2-максимальными подгруппами группы .

Если , то - подгруппа циклической группы и поэтому - нормальная подгруппа в . Так как группа нильпотентна, то - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в и поэтому перестановочна со всеми 2-максимальными подгруппами группы .

3. Предположим теперь, что - нильпотентная группа, такая что , и не является нильпотентнай подгруппой. Тогда . Рассуждая как выше видим, что - группа Шмидта. Так как , то имеет вид

,

где - циклическая -группа.

Если , то . Но - подгруппа циклической группы и поэтому . Из того, что - максимальная подгруппа группы , следует, что - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в группе и поэтому мы имеем , что влечет перестановочность подгруппы со всеми -максимальными подгруппами группы , в частности с .

Если , то подгруппа содержится в некоторой силовской -подгруппе группы . Так как - максимальная подгруппа группы , то и поэтому . Следовательно, - максимальная подгруппа группы . Значит, - нормальная подгруппа в . Так как - нильпотентная группа, такая что , то . Ясно, что - нормальная подгруппа группы . Если , то имеет вид . Так как , то имеет место и поэтому

.

Это означает, что подгруппы и перестановочны. Если , то и поэтому . Следовательно, подгруппы и перестановочны.

4. Если , то подгруппа является максимальной подгруппой группы индекса и - 2-максимальная подгруппа в . Но подгруппы такого вида уже изучены.

5. Если , то подгруппа является максимальной подгруппой группы с индексом и - максимальная подгруппа группы . Но как мы уже знаем, максимальные подгруппы группы перестановочны со всеми -максимальными подгруппами группы .

Это означает, что в любом случае перестановочна со всеми -максимальными подгруппами группы .

Легко видеть, что в группе типа (4) каждая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы .

Пусть - группа типа (5). Легко видеть, что в группе все -максимальные подгруппы группы нормальны в группе . Таким образом, каждая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы .

Пусть - группа типа (6). Пусть - максимальная подгруппа группы . Понятно, что либо , либо , где . Отсюда следует, что - единственная неединичная -максимальная подгруппа группы . Так как , то - нормальная подгруппа в группе , и поэтому подгруппа перестановочна со всеми -максимальнаыми подгруппами группы .

Пусть - группа типа (7). Тогда , где - подгруппа группы простого порядка , - подгруппа группы простого порядка и - циклическая -подгруппа группы , которая не является нормальной подгруппой в группе , но максимальная подгруппа группы нормальна в . Покажем, что в группе любая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы . Предположим, что данное утверждение не верно, и пусть - контрпример минимального порядка.

Предположим, что . Пусть - -максимальная подгруппа группы . Понятно, что - нормальная подгруппа группы . Следовательно, перестановочна с любой -максимальной подгруппой группы . Полученное противоречие с выбором группы показывает, что .

Пусть - подгруппа группы с индексом . Так как , то - неединичная подгруппа группы . Ясно, что - нормальная подгруппа группы . Факторгруппа имеет вид , где - силовская подгруппа порядка , - силовская подгруппа порядка , - циклическая силовская -подгруппа, которая не является нормальной подгруппой в , но максимальная подгруппа группы нормальна в группе . Поскольку , то и поэтому по выбору группы мы заключаем, что любая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы . Пусть - произвольная -максимальная подгруппа группы и - -максимальная подгруппа группы . Понятно, что и . Отсюда следует, что - -максимальная подгруппа группы и - -максимальная подгруппа группы , и поэтому

Следовательно, подгруппы и перестановочны. Полученное противоречие с выбором группы заканчивает доказательство теоремы.

Если в группе любая ее -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы и , то - нильпотентная группа.

Классы групп типов (1) -(7), очевидно, попарно не пересекаются. Покажем, что все это классы не пусты. Но фактически мы должны установить это лишь для классов (2), (3), (5) - (7).

Хорошо известно, что в группе автоморфизмов группы кватернионов имеется элемент порядка . Пусть . Тогда принадлежит типу (2). Действительно, пусть - единственная подгруппа порядка 2 группы . Тогда и поэтому . Понятно, что - главный фактор группы и кроме того, . Таким образом, - максимальная подгруппа группы и все максимальные в подгруппы, индекс которых делится на 2, сопряжены с . Следовательно, - группа Шмидта.

Пусть

и - группа порядка 7. Ввиду леммы Error: Reference source not found, - абелева группа порядка 9. Поскольку изоморфна некоторой подгруппе порядка 3 из группы автоморфизмов , то - группа операторов для с . Пусть . Ясно, что - -максимальная подгруппа группы и не является нормальной подгруппой группы . Легко проверить, что все максимальные подгруппы группы , отличные от , цикличны и не являются нормальными подгруппами группы и поэтому - группа типа (3).

Пусть теперь и - такие простые числа, что делит . Тогда если - группа порядка , то в группе ее автоморфизмов имеется подгруппа порядка . Пусть , где - группа порядка . Тогда - группа операторов для с и поэтому группа принадлежит типу (3).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее