85681 (Классификация групп с перестановочными обобщенно максимальными подгруппами), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Классификация групп с перестановочными обобщенно максимальными подгруппами", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85681"

Текст 3 страницы из документа "85681"

Пусть - произвольная минимальная нормальная подгруппа группы . Так как класс всех метанильпотентных групп образует насыщенную формацию (см. лемму Error: Reference source not found), то - единственная минимальная нормальная подгруппа в , причем . В силу (2), является элементарной абелевой -группой для некоторого простого . Пусть - максимальная подгруппа в такая, что . Пусть . Ясно, что . Так как , мы видим, что . Это показывает, что и, следовательно, . Ясно, что и поэтому по выбору группы , не является нильпотентной группой.

(4) Заключительное противоречие.

В силу (3), в группе имеется максимальная подгруппа , которая не является нормальной подгруппой в . Поскольку для любого , - максимальная в подгруппа и - максимальная подгруппа в , то - -максимальная в подгруппа. Если - нормальная подгруппа в , то . Значит, не является нормальной подгруппой в . Покажем, что - максимальная подгруппа группы . Пусть . Пусть - такая максимальная подгруппа группы , что . Тогда . Значит, или . Первый случай, очевидно, невозможен. Следовательно, . Так как , то - максимальная в подгруппа. Тогда для любого , -перестановочна с . Поскольку , то ввиду леммы Error: Reference source not found(6), перестановочна с . Из максимальности подгруппы следует, что или . Если , то ввиду леммы Error: Reference source not found, . Полученное противоречие показывает, что . Тогда для любого и поэтому . Следовательно, . Это означает, что - нормальная подгруппа в , противоречие. Теорема доказана.

[2.1]. Каждая -максимальная подгруппа группы перестановочна с любой максимальной подгруппой в тогда и только тогда, когда либо нильпотентна, либо - такая ненильпотентная группа с , что циклическая силовская -подгруппа группы не нормальна в , а максимальная подгруппа группы нормальна в .

Доказательство. Необходимость. Разрешимость группы следует из теоремы Error: Reference source not found. Предположим теперь, что не является нильпотентной группой. Пусть - максимальная подгруппа группы , которая не является нормальной в . Пусть и - максимальная подгруппа группы . Рассуждая как выше видим, что . Следовательно, , и - циклическая примарная группа. Пусть . Покажем, что . Допустим, что . Пусть - силовская -подгруппа группы и - максимальная подгруппа группы . Тогда - -максимальная подгруппа группы и, следовательно, по условию - подгруппа группы , что противоречит максимальности подгруппы . Отсюда следует, что .

Достаточность очевидна. Следствие доказано.

[2.2]. Если в группе любая ее максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы и , то - нильпотентная группа.

В дальнейшем нам потребуется следующая теорема.

[2.2]. Пусть - группа, - ее подгруппа Фиттинга. Если любая -максимальная подгруппа группы -перестановочна со всеми -максимальными подгруппами группы , то группа разрешима и для каждого простого .

Доказательство. Предположим, что данная теорема не верна, и пусть - контрпример минимального порядка. Доказательство разобьем на следующие этапы.

(1) - разрешимая группа.

Действительно, если , то каждая -максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы . Тогда по следствию Error: Reference source not found, каждая максимальная подгруппа группы сверхразрешима. Согласно известной теоремы Хупперта Error: Reference source not found о разрешимости группы, в которой все собственные подгруппы сверхразрешимы, - разрешимая группа.

Пусть теперь . Так как условие теоремы справедливо для группы , то группа разрешима и поэтому - разрешимая группа.

(2) Группа имеет единственную минимальную нормальную подгруппу

и ,

где - такая максимальная в подгруппа, что , и .

Так как класс всех разрешимых групп с образует насыщенную формацию , то ввиду (1), и поэтому в группе существует единственная минимальная нормальная подгруппа . Из леммы Error: Reference source not found вытекает, что , где - такая максимальная в подгруппа, что и . Покажем, что делит . Если не делит , то - -группа, и поэтому , что противоречит выбору группы . Итак, делит . Допустим, что . Тогда факторгруппа изоморфна подгруппе группы автоморфизмов . Так как группа абелева, то - сверхразрешимая группа, и поэтому . Полученное противоречие с выбором группы показывает, что .

(3) Заключительное противоречие.

Пусть - -максимальная подгруппа группы и - максимальная подгруппа группы . Тогда и . Пусть - максимальная подгруппа группы такая, что является максимальной подгруппой группы . Покажем, что - максимальная подгруппы группы и - максимальная подгруппа группы . Так как , то - собственная подгруппа группы . Предположим, что в существует подгруппа такая, что . Тогда из того, что - максимальная подгруппа группы , следует, что либо , либо . Если , то , противоречие. Используя приведенные выше рассуждения видим, что . Следовательно, - максимальная подгруппа в . Рассуждая как выше, мы видим, что и - максимальные подгруппы группы . Отсюда следует, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . По условию существует элемент такой, что . Следовательно,

и поэтому . Таким образом, каждая -максимальная подгруппа группы перестановочна с каждой максимальной подгруппой группы . Ввиду (2) и следствия Error: Reference source not found, получаем, что , где силовская -подгруппа нормальна в группе . Значит, , где и . Пусть - силовская -подгруппа и - силовская -подгруппа группы . Пусть - -максимальная подгруппа группы такая, что . Так как , то - неединичная подгруппа. Ясно, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . Следовательно, по условию подгруппа -перестановочна с , и поэтому для некоторого мы имеем - подгруппа группы . Поскольку , то - нормальная подгруппа в группе . Так как , то - нормальная подгруппа в группе . Получили противоречие с тем, что - минимальная нормальная подгруппа. Теорема доказана.

Для доказательства теоремы [2.3] нам понадобятся следующие две леммы.

Если все максимальные подгруппы группы имеют простые порядки, то сверхразрешима.

Доказательство. Так как в группе все -максимальные подгруппы единичны, то ввиду следствия Error: Reference source not found группа либо нильпотентна, либо , где - подгруппа простого порядка и - циклическая -подгруппа, которая не является нормальной в подгруппой ( - различные простые числа). Предположим, что не является нильпотентной группой. Тогда . Поскольку , то - максимальная подгруппа группы и поэтому . Так как группа порядка разрешима, то группа разрешима. Значит, - нормальная в подгруппа и поэтому главные факторы группы имеют простые порядки. Следовательно, - сверхразрешимая группа. Лемма доказана.

Если в группе каждая максимальная подгруппа , индекс которой является степенью числа , нормальна в , то - -нильпотентная группа.

Доказательство. Предположим, что данная лемма не верна, и пусть - контрпример минимального порядка. Тогда:

(1) Для любой неединичной нормальной подгруппы группы факторгруппа -нильпотентна.

Пусть - максимальная подгруппа группы такая, что явяется степенью числа . Тогда - максимальная в подгруппа и является степенью числа . По условию, нормальна в , и поэтому нормальна в . Так как , то - -нильпотентная группа.

(2) Группа имеет единственную минимальную нормальную подгруппу и - -подгруппа.

Пусть - минимальная нормальная подгруппа группы . Так как класс всех -нильпотентных групп образует насыщенную формацию, то ввиду (1), и - единственная минимальная нормальная подгруппа группы . Предположим, что - -подгруппа. Тогда для некоторой -холловой подруппы группы . Поскольку ввиду (1), нормальна в , то - нормальная подгруппа в группе , противоречие. Следовательно, - элементарная абелева -подгруппа.

(3) Заключительное противоречие.

Пусть - максимальная подгруппа группы , не содержащая . Поскольку абелева, то и поэтому . Это влечет . Следовательно, для некоторого . Значит, - нормальная в подгруппа и поэтому , противоречие. Лемма доказана.

Дополнением к теореме [2.2] является следующий факт.

[2.3]. Пусть - группа, - ее подгруппа Фиттинга. Если любая максимальная подгруппа группы -перестановочна со всеми -максимальными подгруппами группы , то группа разрешима и для каждого простого .

Доказательство. Предположим, что теорема не верна, и пусть - контрпример минимального порядка.

(1) - непростая группа. Допустим, что . Поскольку ввиду леммы Error: Reference source not found(3), условие теоремы выполняется для факторгруппы , то по выбору группы , разрешима и поэтому - разрешимая группа. Полученное противоречие показывает, что и, следовательно, любая максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами в .

Предположим, что все -максимальные подгруппы группы единичны. Тогда порядок каждой -максимальной подгруппа группы является делителем простого числа. Следовательно, любая максимальная подгруппа группы либо нильпотентна (порядка или ), либо является ненильпотентной подгруппой и имеет порядок . Значит, все максимальные подгруппы сверхразрешимы. Но ввиду теоремы Error: Reference source not found, мы получаем, что разрешима. Это противоречие показывает, что в группе существует неединичная -максимальная подгруппа . Пусть - максимальная подгруппа группы , содержащая . Тогда для любого , . Если , то ввиду леммы Error: Reference source not found, . Полученное противоречие показывает, что . Тогда , что влечет . Следовательно, - неединичная нормальная подгруппа в и поэтому группа непроста.

(2) Для любой неединичной нормальной в подгруппы факторгруппа разрешима (это прямо вытекает из леммы Error: Reference source not found(3)).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее