85681 (Классификация групп с перестановочными обобщенно максимальными подгруппами)

2016-07-30СтудИзба

Описание файла

Документ из архива "Классификация групп с перестановочными обобщенно максимальными подгруппами", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85681"

Текст из документа "85681"

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра алгебры и геометрии

Курсовая работа

Классификация групп с перестановочными обобщенно максимальными подгруппами

Исполнитель:

Студентка группы М-32 Лапухова А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Скиба М.Т.

Гомель 2005

Содержание

Перечень условных обозначений

Введение

1. Классификация групп с перестановочными обобщенно максимальными подгруппами

2. Группы с -перестановочными -максимальными подгруппами

3. Группы, в которых -максимальные подгруппы перестановочны с -максимальными подгруппами

4. Группы, в которых максимальные подгруппы перестановочны с -максимальными подгруппами

Заключение

Литература

Перечень условных обозначений

В работе все рассматриваемые группы предполагаются конечными. Используются обозначения, принятые в книгах. Буквами обозначаются простые числа.

Будем различать знак включения множеств и знак строгого включения ;

и - соответственно знаки пересечения и объединения множеств;

- пустое множество;

- множество всех для которых выполняется условие ;

- множество всех натуральных чисел;

- множество всех простых чисел;

- некоторое множество простых чисел, т.е. ;

- дополнение к во множестве всех простых чисел; в частности, ;

примарное число - любое число вида ;

Пусть - группа. Тогда:

- порядок группы ;

- порядок элемента группы ;

- единичный элемент и единичная подгруппа группы ;

- множество всех простых делителей порядка группы ;

- множество всех различных простых делителей натурального числа ;

-группа - группа , для которой ;

-группа - группа , для которой ;

- подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ;

- подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ;

- наибольшая нормальная -нильпотентная подгруппа группы ;

- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;

- -ый коммутант группы ;

- наибольшая нормальная -подгруппа группы ;

- -холловская подгруппа группы ;

- силовская -подгруппа группы ;

- дополнение к силовской -подгруппе в группе , т.е. -холловская подгруппа группы ;

- группа всех автоморфизмов группы ;

- является подгруппой группы ;

- является собственной подгруппой группы ;

- является максимальной подгруппой группы ;

нетривиальная подгруппа - неединичная собственная подгруппа;

- является нормальной подгруппой группы ;

- подгруппа характеристична в группе , т.е. для любого автоморфизма ;

- индекс подгруппы в группе ;

;

- централизатор подгруппы в группе ;

- нормализатор подгруппы в группе ;

- центр группы ;

- циклическая группа порядка ;

- ядро подгруппы в группе , т.е. пересечение всех подгрупп, сопряжённых с в .

Если и - подгруппы группы , то:

- прямое произведение подгрупп и ;

- полупрямое произведение нормальной подгруппы и подгруппы ;

- и изоморфны.

Группа называется:

примарной, если ;

бипримарной, если .

Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

- подгруппа, порожденная всеми , для которых выполняется .

, где .

Группу называют:

-замкнутой, если силовская -подгруппа группы нормальна в ;

-нильпотентной, если -холловская подгруппа группы нормальна в ;

-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;

-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;

нильпотентной, если все ее силовские подгруппы нормальны;

метанильпотентной, если существует нормальная нильпотентная подгруппа группы такая, что нильпотентна.

разрешимой, если существует номер такой, что ;

сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.

Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.

Добавлением к подгруппе группы называется такая подгруппа из , что .

Минимальная нормальная подгруппа группы - неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы .

Цоколь группы - произведение всех минимальных нормальных подгрупп группы .

- цоколь группы .

Экспонента группы - это наименьшее общее кратное порядков всех ее элементов.

Цепь - это совокупность вложенных друг в друга подгрупп. Ряд подгрупп - это цепь, состоящая из конечного числа членов и проходящая через единицу.

Ряд подгрупп называется:

субнормальным, если для любого ;

нормальным, если для любого ;

главным, если является минимальной нормальной подгруппой в для всех .

Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:

- класс всех групп;

- класс всех абелевых групп;

- класс всех нильпотентных групп;

- класс всех разрешимых групп;

- класс всех -групп;

- класс всех сверхразрешимых групп;

- класс всех абелевых групп экспоненты, делящей .

Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.

Пусть - некоторый класс групп и - группа, тогда:

- -корадикал группы , т.е. пересечение всех тех нормальных подгрупп из , для которых . Если - формация, то является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если - формация всех сверхразрешимых групп, то называется сверхразрешимым корадикалом группы .

Формация называется насыщенной, если всегда из следует, что и .

Класс групп называется наследственным или замкнутым относительно подгрупп, если из того, что следует, что и каждая подгруппа группы также принадлежит .

Произведение формаций и состоит из всех групп , для которых , т.е. .

Пусть - некоторая непустая формация. Максимальная подгруппа группы называется -абнормальной, если .

Подгруппы и группы называются перестановочными, если .

Пусть , -подгруппы группы и . Тогда называется:

(1) -перестановочной с , если в имеется такой элемент , что ;

(2) наследственно -перестановочной с , если в имеется такой элемент , что .

Пусть - максимальная подгруппа группы . Нормальным индексом подгруппы называют порядок главного фактора , где и , и обозначают символом .

Подгруппа группы называется -максимальной подгруппой или иначе второй максимальной подгруппой в , если в найдется такая максимальная подгруппа , в которой является максимальной подгруппой. Аналогично определяют -максимальные (третьи максимальные) подгруппы, -максимальные подгруппы и т.д.

Введение

Подгруппы и группы называются перестановочными, если . Подгруппа группы называется перестановочной или квазинормальной в , если перестановочна с каждой подгруппой группы .

Перестановочные подгруппы обладают рядом интересных свойств, чем был и вызван широкий интерес к анализу перестановочных и частично перестановочных подгрупп в целом. Изучение перестановочных подгрупп было начато в классической работе Оре, где было доказано, что любая перестановочная подгруппа является субнормальной. Подгруппы, перестановочные с силовскими подгруппами, впервые изучались в работе С.А. Чунихина . Отметим, что подгруппы такого типа были названы позднее в работе Кегеля -квазинормальными. В 60-70-х годах прошлого столетия появились ряд ключевых работ по теории перестановочных подгрупп, которые предопределили основные направления развития теории перестановочных подгрупп в последующие годы. Уточняя отмеченный выше результат Оре, Ито и Сеп в работе доказали, что для каждой перестановочной подгруппы группы факторгруппа нильпотентна. В другом направлении этот результат Оре получил развитие в работах Кегеля и Дескинса. Кегель доказал, что любая -квазинормальная подгруппа является субнормальной и показал, что подгруппы, перестановочные с силовскими подгруппами, образуют решетку. Первый из этих двух результатов Дескинс обобщил следующим образом, если порождается своими -элементами и -подгруппа группы -квазинормальна в , то факторгруппа нильпотентна. В этой работе Дескинс высказал предположение о том, что для квазинормальной в подгруппы факторгруппа абелева. Отрицательное решение этой задачи было получено Томпсоном в работе.

Отметим, что после выхода работ, частично перестановочные подгруппы стали активно использоваться в исследованиях многих авторов. В частности, в работе Э.М. Пальчик исследовал свойства -квазинормальных подгрупп, т. е. подгрупп перестановочных со всеми бипримарными подгруппами группы . Существенно усиливая результат работы, Майер и Шмид доказали, что если - квазинормальная подгруппа конечной группы , то факторгруппа содержится в гиперцентре факторгруппы , где - ядро подгруппы . Отметим, что аналогичный результат для подгрупп, перестановочных с силовскими подгруппами, был получен лишь в недавней работе П. Шмидта. Стоунхьюер в работе обобщил результат Оре на случай бесконечных групп. Он доказал, что каждая перестановочная подгруппа конечно порожденной группы субнормальна.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее