85681 (612546)
Текст из файла
Министерство образования Республики Беларусь
Учреждение образования
«Гомельский государственный университет им. Ф. Скорины»
Математический факультет
Кафедра алгебры и геометрии
Курсовая работа
Классификация групп с перестановочными обобщенно максимальными подгруппами
Исполнитель:
Студентка группы М-32 Лапухова А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Скиба М.Т.
Гомель 2005
Содержание
Перечень условных обозначений
Введение
1. Классификация групп с перестановочными обобщенно максимальными подгруппами
2. Группы с
-перестановочными
-максимальными подгруппами
3. Группы, в которых
-максимальные подгруппы перестановочны с
-максимальными подгруппами
4. Группы, в которых максимальные подгруппы перестановочны с
-максимальными подгруппами
Заключение
Литература
Перечень условных обозначений
В работе все рассматриваемые группы предполагаются конечными. Используются обозначения, принятые в книгах. Буквами
обозначаются простые числа.
Будем различать знак включения множеств
и знак строгого включения
;
и
- соответственно знаки пересечения и объединения множеств;
- пустое множество;
- множество всех
для которых выполняется условие
;
- множество всех натуральных чисел;
- множество всех простых чисел;
- некоторое множество простых чисел, т.е.
;
- дополнение к
во множестве всех простых чисел; в частности,
;
примарное число - любое число вида
;
Пусть
- группа. Тогда:
- порядок группы
;
- порядок элемента
группы
;
- единичный элемент и единичная подгруппа группы
;
- множество всех простых делителей порядка группы
;
- множество всех различных простых делителей натурального числа
;
-группа - группа
, для которой
;
-группа - группа
, для которой
;
- подгруппа Фраттини группы
, т.е. пересечение всех максимальных подгрупп группы
;
- подгруппа Фиттинга группы
, т.е. произведение всех нормальных нильпотентных подгрупп группы
;
- наибольшая нормальная
-нильпотентная подгруппа группы
;
- коммутант группы
, т.е. подгруппа, порожденная коммутаторами всех элементов группы
;
-
-ый коммутант группы
;
- наибольшая нормальная
-подгруппа группы
;
-
-холловская подгруппа группы
;
- силовская
-подгруппа группы
;
- дополнение к силовской
-подгруппе в группе
, т.е.
-холловская подгруппа группы
;
- группа всех автоморфизмов группы
;
-
является подгруппой группы
;
-
является собственной подгруппой группы
;
-
является максимальной подгруппой группы
;
нетривиальная подгруппа - неединичная собственная подгруппа;
-
является нормальной подгруппой группы
;
- подгруппа
характеристична в группе
, т.е.
для любого автоморфизма
;
- индекс подгруппы
в группе
;
;
- централизатор подгруппы
в группе
;
- нормализатор подгруппы
в группе
;
- центр группы
;
- циклическая группа порядка
;
- ядро подгруппы
в группе
, т.е. пересечение всех подгрупп, сопряжённых с
в
.
Если
и
- подгруппы группы
, то:
- прямое произведение подгрупп
и
;
- полупрямое произведение нормальной подгруппы
и подгруппы
;
-
и
изоморфны.
Группа
называется:
примарной, если
;
бипримарной, если
.
Скобки
применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.
- подгруппа, порожденная всеми
, для которых выполняется
.
, где
.
Группу
называют:
-замкнутой, если силовская
-подгруппа группы
нормальна в
;
-нильпотентной, если
-холловская подгруппа группы
нормальна в
;
-разрешимой, если существует нормальный ряд, факторы которого либо
-группы, либо
-группы;
-сверхразрешимой, если каждый ее главный фактор является либо
-группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
метанильпотентной, если существует нормальная нильпотентная подгруппа
группы
такая, что
нильпотентна.
разрешимой, если существует номер
такой, что
;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе
группы
называется такая подгруппа
из
, что
.
Минимальная нормальная подгруппа группы
- неединичная нормальная подгруппа группы
, не содержащая собственных неединичных нормальных подгрупп группы
.
Цоколь группы
- произведение всех минимальных нормальных подгрупп группы
.
- цоколь группы
.
Экспонента группы
- это наименьшее общее кратное порядков всех ее элементов.
Цепь - это совокупность вложенных друг в друга подгрупп. Ряд подгрупп - это цепь, состоящая из конечного числа членов и проходящая через единицу.
Ряд подгрупп
называется:
субнормальным, если
для любого
;
нормальным, если
для любого
;
главным, если
является минимальной нормальной подгруппой в
для всех
.
Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:
- класс всех групп;
- класс всех абелевых групп;
- класс всех нильпотентных групп;
- класс всех разрешимых групп;
- класс всех
-групп;
- класс всех сверхразрешимых групп;
- класс всех абелевых групп экспоненты, делящей
.
Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.
Пусть
- некоторый класс групп и
- группа, тогда:
-
-корадикал группы
, т.е. пересечение всех тех нормальных подгрупп
из
, для которых
. Если
- формация, то
является наименьшей нормальной подгруппой группы
, факторгруппа по которой принадлежит
. Если
- формация всех сверхразрешимых групп, то
называется сверхразрешимым корадикалом группы
.
Формация
называется насыщенной, если всегда из
следует, что и
.
Класс групп
называется наследственным или замкнутым относительно подгрупп, если из того, что
следует, что и каждая подгруппа группы
также принадлежит
.
Произведение формаций
и
состоит из всех групп
, для которых
, т.е.
.
Пусть
- некоторая непустая формация. Максимальная подгруппа
группы
называется
-абнормальной, если
.
Подгруппы
и
группы
называются перестановочными, если
.
Пусть
,
-подгруппы группы
и
. Тогда
называется:
(1)
-перестановочной с
, если в
имеется такой элемент
, что
;
(2) наследственно
-перестановочной с
, если в
имеется такой элемент
, что
.
Пусть
- максимальная подгруппа группы
. Нормальным индексом подгруппы
называют порядок главного фактора
, где
и
, и обозначают символом
.
Подгруппа
группы
называется
-максимальной подгруппой или иначе второй максимальной подгруппой в
, если в
найдется такая максимальная подгруппа
, в которой
является максимальной подгруппой. Аналогично определяют
-максимальные (третьи максимальные) подгруппы,
-максимальные подгруппы и т.д.
Введение
Подгруппы
и
группы
называются перестановочными, если
. Подгруппа
группы
называется перестановочной или квазинормальной в
, если
перестановочна с каждой подгруппой группы
.
Перестановочные подгруппы обладают рядом интересных свойств, чем был и вызван широкий интерес к анализу перестановочных и частично перестановочных подгрупп в целом. Изучение перестановочных подгрупп было начато в классической работе Оре, где было доказано, что любая перестановочная подгруппа является субнормальной. Подгруппы, перестановочные с силовскими подгруппами, впервые изучались в работе С.А. Чунихина . Отметим, что подгруппы такого типа были названы позднее в работе Кегеля
-квазинормальными. В 60-70-х годах прошлого столетия появились ряд ключевых работ по теории перестановочных подгрупп, которые предопределили основные направления развития теории перестановочных подгрупп в последующие годы. Уточняя отмеченный выше результат Оре, Ито и Сеп в работе доказали, что для каждой перестановочной подгруппы
группы
факторгруппа
нильпотентна. В другом направлении этот результат Оре получил развитие в работах Кегеля и Дескинса. Кегель доказал, что любая
-квазинормальная подгруппа является субнормальной и показал, что подгруппы, перестановочные с силовскими подгруппами, образуют решетку. Первый из этих двух результатов Дескинс обобщил следующим образом, если
порождается своими
-элементами и
-подгруппа
группы
-квазинормальна в
, то факторгруппа
нильпотентна. В этой работе Дескинс высказал предположение о том, что для квазинормальной в
подгруппы
факторгруппа
абелева. Отрицательное решение этой задачи было получено Томпсоном в работе.
Отметим, что после выхода работ, частично перестановочные подгруппы стали активно использоваться в исследованиях многих авторов. В частности, в работе Э.М. Пальчик исследовал свойства
-квазинормальных подгрупп, т. е. подгрупп перестановочных со всеми бипримарными подгруппами группы
. Существенно усиливая результат работы, Майер и Шмид доказали, что если
- квазинормальная подгруппа конечной группы
, то факторгруппа
содержится в гиперцентре факторгруппы
, где
- ядро подгруппы
. Отметим, что аналогичный результат для подгрупп, перестановочных с силовскими подгруппами, был получен лишь в недавней работе П. Шмидта. Стоунхьюер в работе обобщил результат Оре на случай бесконечных групп. Он доказал, что каждая перестановочная подгруппа конечно порожденной группы субнормальна.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















