85681 (612546), страница 5

Файл №612546 85681 (Классификация групп с перестановочными обобщенно максимальными подгруппами) 5 страница85681 (612546) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

(2) - группа Шмидта, где - группа кватернионов порядка и - группа порядка ;

(3) и ,

где - группа простого порядка , - нециклическая -группа и все ее максимальные подгруппы, отличные от , цикличны;

(4) ,

где - группа порядка , - группа простого порядка , отличного от ;

(5) ,

где - группа порядка , каждая подгруппа которой нормальна в группе , - циклическая -группа и ;

(6) ,

где - примарная циклическая группа порядка , - группа простого порядка , где и ;

(7) ,

где и - группы простых порядков и ( ), - циклическая -подгруппа в ( ), которая не является нормальной в , но максимальная подгруппа которой нормальна в .

Доказательство. Необходимость. Пусть - ненильпотентная группа, у которой каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы .

Если в группе все максимальные подгруппы нильпотентны, то группа является группой Шмидта. Ввиду леммы, группа оказывается группой типа (1) или типа (2).

Итак, мы можем предположить, что в группе существует ненильпотентная максимальная подгруппа.

Из теоремы следует, что группа разрешима. Так как в разрешимой группе индекс любой максимальной подгруппы является степенью простого числа, то .

I. .

Пусть - некоторая силовская -подгруппа в и - некоторая силовская -подгруппа в , где .

Предположим, что в группе нет нормальных силовских подгрупп. Так как группа разрешима, то в существует нормальная подгруппа простого индекса, скажем индекса , и она не является нильпотентной группой. Действительно, если нильпотентна, то в ней нормальна силовская -подгруппа . Так как , то - нормальная подгруппа в . Из того, что следует, что - нормальная силовская -подгруппа в . Полученное противоречие показывает, что не является нильпотентной подгруппой.

Так как является максимальной подгруппой в , то по условию все 2-максимальные подгруппы группы перестановочны с каждой максимальной подгруппой группы . Ввиду следствия Error: Reference source not found, группа имеет вид , где - группа простого порядка и - циклическая -подгруппа.

Так как

и факторгруппа изоморфна подгруппе из , то больше .

Если - нильпотентная группа, то и поэтому согласно теореме Бернсайда Error: Reference source not found, группа -нильпотентна. Но тогда . Полученное противоречие показывает, что является ненильпотентной группой. Так как - нормальная подгруппа в , то ввиду следствия Error: Reference source not found, подгруппа имеет вид , где - циклическая -подгруппа, и, следовательно, . Полученное противоречие показывает, что в группе существует нормальная силовская подгруппа.

Пусть, например, такой является силовская -подгруппа группы . Пусть . Ясно, что .

Если в группе существует подгруппа Шмидта , индекс которой равен , то . Ввиду следствия Error: Reference source not found, - группа порядка .

Пусь . Допустим, что - циклическая подгруппа. В этом случае, группа является группой Шмидта. Полученное противоречие с выбором группы показывает, что - нециклическая подгруппа. Пусть - произвольная максимальная подгруппа группы , отличная от . Если - нильпотентная подгруппа, то группа нильпотентна, противоречие. Следовательно, - группа Шмидта, и поэтому - циклическая подгруппа. Таким образом, группа относится к типу (3).

Пусть . Тогда . Следовательно, - -максимальная подгруппа группы . Пусть - произвольная максимальная подгруппа группы . Если - нильпотентная подгруппа, то , и поэтому . Полученное противоречие показывает, что - группа Шмидта. Значит, - циклическая подгруппа. Пусть - произвольная максимальная подгруппа группы , отличная от . Так как , то - единственная -максимальная подгруппа группы . Следовательно, . Факторгруппа , где - элементарная абелева подгруппа порядка и . Так как - неприводимая абелева группа автоморфизмов группы , то - циклическая группа, и поэтому подгруппа циклическая, противоречие.

Предположим теперь, что у всех подгрупп Шмидта индекс в группе является степенью числа .

Так как в группе существуют собственные подгруппы Шмидта, то . Пусть - подгруппа Шмидта группы . Тогда для некоторого . Понятно, что для некоторого имеет место и поэтому не теряя общности мы может полагать, что . Поскольку , то . Из того, что , следует, что .

Так как - максимальная подгруппа группы , то по условию 2-максимальные подгруппы группы перестановочны со всеми максимальными подгруппами в . Используя следствие, мы видим, что - группа простого порядка и - циклическая подгруппа, причем все собственные подгруппы группы нормальны в . Следовательно, является максимальной подгруппой группы .

Предположим, что . Пусть - максимальная подгруппа группы . Тогда . Из того, что , следует, что - нильпотентная максимальная подгруппа в . Значит, - нормальная подгруппа в . Поскольку нормальна в , то - нормальная подгруппа группы . Так как , то в группе существует 2-максимальная подгруппа такая, что . Тогда - -максимальная подгруппа в , и следовательно, - -максимальная подгруппа в . Поскольку по условию перестановочна с , то

что приводит к противоречию с максимальностью подгруппы . Следовательно, .

Предположим теперь, что . Допустим, что . Пусть - произвольная максимальная подгруппа группы и - произвольная -максимальная подгруппа группы . Рассуждая как выше видим, что - нормальная подгруппа в группе и поэтому - подгруппа группы . Используя приведенные выше рассуждения видим, что . Полученное противоречие с максимальностью подгруппы показывает, что . Пусть - максимальная подгруппа группы , такая что . Так как , то - абелева и поэтому . Следовательно, . Так как , то . Из того, что

получаем, что , и поэтому - нормальная подгруппа в группе .

Предположим, что в группе существует подгруппа порядка , отличная от . Из того, что порядок следует, что - максимальная подгруппа группы . Отсюда следует, что - -максимальная подгруппа группы . Так как по условию подгруппы и перестановочны, то мы имеем

Следовательно, - подгруппа группы , и поэтому

Это противоречие показывает, что в группе существует единственная подгруппа порядка . Ввиду теоремы Error: Reference source not found, группа является либо группой кватернионов порядка , либо является циклической группой порядка . В первом случае, подгруппа порядка группы содержится в центре группы , и поэтому подгруппа не является группой Шмидта, противоречие. Следовательно, мы имеем второй случай. Значит, - циклическая подгруппа порядка . Понятно, что . Если , то подгруппа нормальна в группе , и поэтому . Полученное противоречие показывает, что . Таким образом, - группа типа (6). Пусть теперь . Если порядок , то , и поэтому - группа типа (4). Предположим, что порядок . Пусть - максимальная подгруппа группы и - максимальная подгруппа группы . Из того, что , следует, что - неединичная подгруппа. Так как подгруппа нильпотентна, то . Но как мы уже знаем, - циклическая подгруппа и поэтому . Следовательно, . Пусть - произвольная подгруппа порядка группы . Ясно, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . Значит, по условию подгруппы и перестановочны. Так как - абелева подгруппа, то - нормальная подгруппа в группе . Заметим, что поскольку , то

является нормальной подгруппой в и поэтому - нормальная подгруппа в группе . Это означает, что - группа типа (5).

II. .

Пусть - некоторая силовская -подгруппа группы , - некоторая силовская -подгруппа группы и - некоторая силовская -подгруппа группы , где - различные простые делители порядка группы . Пусть - произвольная нормальная максимальная подгруппа группы . Так как - разрешимая группа, то индекс подгруппы в группе равен некоторому простому числу. Пусть, например, индекс равен . Ввиду следствия Error: Reference source not found, - либо нильпотентная подгруппа, либо ненильпотентная группа порядка .

1. Предположим, что - нильпотентная подгруппа. Пусть - силовская -подгруппа группы , - силовская -подгруппа группы и - силовская -подгруппа группы . Тогда . Так как и , то и - нормальные подгруппы в группе . Из того, что индекс подгруппы равен , следует, что и - силовские подгруппы группы и поэтому и . Понятно, что для некоторого имеет место и поэтому, не теряя общности, мы можем полагать, что . Следовательно, . Ясно, что не является нормальной подгруппой в группе .

Если подгруппы и нильпотентны, то и , и поэтому - нормальная подгруппа в группе . Значит, подгруппы и не могут быть обе нильпотентными подгруппами. Следовательно, возможны следующие случаи.

а) и - группы Шмидта.

Так как , то ввиду следствия Error: Reference source not found, - подгруппа простого порядка и - циклическая подгруппа, которая не является нормальной в группе , но максимальная подгруппа группы нормальна в . Аналогично видим, что - подгруппа простого порядка и - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в , и поэтому является группой типа (7).

Характеристики

Тип файла
Документ
Размер
8,87 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее