11-20 (Билеты по теории)

2017-07-10СтудИзба

Описание файла

Файл "11-20" внутри архива находится в папке "Билеты по теории". Документ из архива "Билеты по теории", который расположен в категории "". Всё это находится в предмете "физика" из 3 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "физика" в общих файлах.

Онлайн просмотр документа "11-20"

Текст из документа "11-20"

11

2) Интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.

 

Явление интерференции света состоит в отсутствии суммирования интенсивностей световых волн при их наложении, т.е. во взаимном усилении этих волн в одних точках

пространства и ослаблении – в других. Необходимым условием интерференции волн

является их когерентность. Необходимо, кроме того, чтобы колебания векторов Е электромагнитных полей интерферирующих волн совершались вдоль одного и того же или близких направлений.

Явление интерференции света используется в спектральном анализе, для точного измерения расстояний и углов, в задачах контроля качества поверхности, для создания светофильтров, зеркал, просветляющих покрытий. На явлении интерференции основана голография.

И нтерферометры – оптические приборы, основанные на явлении интерференции световых волн. Они получили наибольшее распространение как приборы для измерения длин волн спектральных линий и их структуры; для измерения показателя преломления прозрачных сред; в метрологии для  абсолютных и относительных измерений длин и перемещений объектов; измерения угловых размеров звезд; для контроля формы и деформации оптических деталей и чистоты металлических поверхностей. Принцип действия основан на пространственном разделении пучка света с целью получения нескольких когерентных лучей, которые проходят различные оптические пути, а затем сводятся вместе и наблюдается результат их интерференции.

                                        Параллельный пучок света от источника L                   падает на полупрозрачную пластину P1, разделяется на два когерентных пучка 1 и 2. После отражения от зеркал M1 и M2 и                  повторного прохождения луча 2 через пластину P1 оба луча проходят в направлении АО через объектив О2 и интерферируют в его фокальной плоскости. Пластина P2 компенсирует разность хода

между лучами 1 и 2, возникающую из-за того, что луч 2 дважды  проходит через пластину P1, а луч 1 ни одного.

3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное поглощение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна

    Процесс излучения электромагнитной волны атомом может быть двух типов: спонтанным и вынужденным. При спонтанном излучении атом переходит с верхнего энергетического уровня на нижний самопроизвольно, без внешних воздействий на атом. Спонтанное излучение атома обусловлено только неустойчивостью его верхнего (возбужденного) состояния, вследствие кото­рой атом рано или поздно освобождается от энергии возбуждения путем излучения фотона. Различные атомы излучают спон­танно, т.е. независимо друг от друга, и генерируют фотоны, ко­торые распространяются в различных направлениях, имеют раз­личные фазы и направления поляризации. Следовательно, спонтанное излучение является некогерентным.

    Излучение может возникать также и в том случае, если на возбужденный атом действует электромагнитная волна с часто­той ν, удовлетворяющей соотношению hν=Em- En, где Em, и En -энергии квантовых состояний атома (частота ν при этом называ­ется резонансной). Возникающее при этом излучение является вынужденным. В каждом акте вынужденного излучения участ­вуют два фотона. Один из них, распространяясь от внешнего ис­точника (внешним источником для рассматриваемого атома мо­жет являться и соседний атом), воздействует на атом, в результа­те чего испускается фотон. Оба фотона имеют одинаковое на­правление распространения и поляризации, а также одинаковые частоты и фазы. То есть вынужденное излучение всегда коге­рентно с вынуждающим.

Атомы не только испускают, но и поглощают фотоны с ре­зонансными частотами. При поглощении фотона атомы возбуж­даются. Поглощение фотона всегда является вынужденным про­цессом, происходящим под действием внешней электромагнит­ной волны. В каждом акте поглощается один фотон, а участвую­щий в этом процессе атом переходит в состояние с большей.

Ширина спектральных линий, интервал частот v (или длин волн l = c/n, с — скорость света), характеризующий спектральные линии в спектрах оптических атомов, молекул и др. квантовых систем.

До сих пор мы рассматривали только два вида переходов атомов между энергетическими уровнями: спонтанные (самопроизвольные) переходы с более высоких на более низкие уровни и происходящие под действием излучения (вынужденные) переходы с более низких на более высокие уровни. Переходы первого вида приводят к спонтанному испусканию атомами фотонов, переходы второго вида обусловливают поглощение излучения веществом. В 1918 г. Эйнштейн обратил внимание на то, что двух указанных видов излучения недостаточно для объяснения существования состояний равновесия между излучением и веществом. Действительно, вероятность спонтанных переходов определяется лишь внутренними свойствами атомов и, следовательно, не может зависеть от интенсивности падающего излучения, в то время как вероятность «поглощательных» переходов зависит как от свойств атомов, так и от интенсивности падающего излучения. Для возможности установления равновесия при произвольной интенсивности падающего излучения необходимо существование «испускательных» переходов, вероятность которых возрастала бы с увеличением интенсивности излучения, т. е. «испускатель­ных» переходов, вызываемых излучением. Возникающее в результате таких переходов излучение называется вынужденным или индуцированным. Исходя из термодинамических соображений, Эйнштейн доказал, что вероятность вынужденных переходов, сопровождающихся излучением, должна быть равна вероятности вынужденных переходов, сопровождающихся поглощением света. Таким образом, вынужденные переходы могут с равной вероятностью происходить как в одном, так и в другом направлении.

Вынужденное излучение обладает весьма важными свойствами. Направление его распространения в точности совпадает с направлением распространения вынуждающего излучения, т. е. внешнего излучения, вызвавшего переход. То же самое относится к частоте, фазе и поляризации вынужденного и вынуждающего излучений. Следовательно, вынужденное и вынуждающее излучения оказываются строго когерентными. Эта особенность вынужденного излучения лежит в основе действия усилителей и генераторов света, называемых лазерами.

Пусть Pnm — вероятность вынужденного перехода атома в единицу времени с энергетического уровня Еn на уровень Еm, а Рmn — вероятность обратного перехода. Выше было указано, что при одинаковой интенсивности излучения Рnm = Рmn. Вероятность вынужденных переходов пропорциональна плотности энергии «и вынуждающего переход электромагнитного поля1), приходящейся на частоту со, соответствующую данному переходу

(w= (En — Еm) /h) .Обозначив коэффициент пропорциональности буквой В, получим

Величины Вnm и Вmn называются коэффициентами Эйнштейна.  Согласно сказанному выше Вnm = Вmn. Основываясь на равновероятности вынужденных переходов n-m и m-n, Эйнштейн дал весьма простой вывод формулы Планка. Равновесие между веществом и излучением будет достигнуто при условии, что число атомов Nnm, совершающих в единицу времени переход из состояния п в состояние т, будет равно числу атомов Nmn, совершающих переход в обратном направлении. Допустим, что En>Em. Тогда переходы m-n смогут происходить только под воздействием излучения. Переходы же n-m будут совершаться как вынужденно, так и спонтанно

Билет №12

2) Дифракция света. Принцип Гюйгенса-Френеля. Метод  зон Френеля.

Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями, например, в близи границ прозрачных или непрозрачных тел, сквозь малые отверстия. Дифракция, в частности, приводит к огибанию световыми волнами препятствий, и проникновению света в область геометрической тени. Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в рез-тате суперпозиции волн. Перераспределение интенсивности, возникающее вследствие суперпозиции волн, возбуждаемых когерентными источниками, принято называть дифракцией волн. Поэтому говорят, например, об интерференционной картине от двух узких щелей и о дифракционной картине от одной щели. Различают два вида дифракции. Если источник 8 и точка наблюдения Р расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку Р, образуют практически параллельные пучки, говорят о дифракции Фраунгофера (диф. в параллельных лучах). В противном случае говорят о диф. Френеля.Явление дифр. объясняется с помощью принципа Гюйгенса, согл. которому кажд. точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает полож. волнового фронта в след. момент времени. Но этот принцип не дает сведений об амплит, а след. и об интенсти волн, распрострихся в различн, направлениях. Френель дополнил принцип Г. представлением об интерференции вторичных волн. Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства. Согласно принципу Г-Ф каждый элемент волновой пов-ти S служит источником вторичной волны, амплитуда которой пропорциональна величине элемента dS. Ампл. сферич. волны убывает с расстоянием по закону 1/r.   След. от кажд. участка ds волновой пов-ти в точку Р, лежащую перед этой пов-тью, приходит

колебание dЕ=K(aodS/r)cos(wt+α0 –kr)где wt+α0

— в месте располож. волновой пов-ти S,к - волновое число. Мн-тель ao определяется ампл-дой светового колеб. в том месте, где находится dS. К завис. от фи между нормалью n к dS и направл-ием от dS к Р. При ф =0 К -максимален, при фи =п/2 - он обращается в 0. Результирующее колебание в точке Р будет:  E=∫K(фи) ao/r cos(wt+α0 –kr)dS

формула является аналитическим выражением принципа Г-Ф.

Метод зон Френеля. Принцип Г-Ф. должен был ответить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмотрев взаимную интерференцию вторичных волн и применив след. прием. Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника монохроматического света S0. Согласно принципу Г-Ф. заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся пов-тью фронта волны, идущей из S0(пов-ть сферы радиуса К с центром 8). Радиус выберем так, чтобы расстояние L от точки М до этой сферы (L=|ОМ|) было порядка К.

Разобьем пов-ть S на небольшие по площади кольцевые участки - зоны Френеля. Колебания, возбуждаемые в точке М двумя соседними зонами , противоположны по фазе, т.к. разность хода от сходственных точек этих зон до точки М равна лямда/2 . След. амплитуда результирующих

колебаний в точке М: А=А1-А2+А3-А4+..., где Ai - амплитуда колебаний, возбуждаемых в точке М вторичными источниками. Величина А; зависит от площади сигма-той зоны и угла фи между внешней нормалью к пов-ти зоны в какой-либо ее т. и прямой, направленной из этой т. в т. М. Точки В и В’ соответствуют внешне границе 1-той зоны.

Общее число N зон Френеля, уменьшающихся на части сферы, обращенной к точке М велико:N = 2(√ (L2 +2LR –L/лямда).

 Радиус зоны определяется по ф-ле: ri  =√iRL(лямда)/(r+l)

3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенности). Лазеры.

В лампе накаливания электрический ток нагревает вольфрамовую спиральку и возбуждает атомы вольфрама, перебрасывая их внешние электроны в состояния с повышенными значениями энергии. Эти состояния неустойчивы, поэтому электроны возвращаются на основной уровень, излучая фотоны. Никаких особых усилий для этого не требуется, такое возвращение происходит самопроизвольно, спонтанно. Поскольку спонтанные электронные переходы никак не скоррелированы между собой, световые волны с равной вероятностью испускаются во всех направлениях, с разными фазами, поляризациями и энергиями.

 

Атомы могут излучать фотоны также под действием фотона, энергия которого близка к разнице уровней. Такой фотон как бы «стряхивает» атом с верхнего уровня на нижний – происходит вынужденный переход. При этом излучаемый фотон оказывается полностью когерентен вынуждающему – он имеет то же самое направление, ту же самую энергию, фазу и поляризацию.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее