11-20 (1022447), страница 2
Текст из файла (страница 2)
Однако в состоянии термодинамического равновесия количество невозбужденных атомов гораздо больше, чем возбужденных. Чтобы возбудить атомы (перевести на верхние уровни), требуется энергия – химическая, световая или любая другая (это называется накачка). Причем нужно удержать атомы наверху достаточно долгое (по квантовым меркам, конечно) время, чтобы накопить определенный «запас» (в научных терминах – инверсия населенностей). В двухуровневой схеме это затруднительно (хотя и возможно): атомы с верхнего уровня слишком быстро скатываются на основной.
Практически инверсное состояние среды осуществлено в принципиально новых источниках излучения — оптических квантовых генераторах, или лазерах (от первых букв английского названия 1л§п1 АтрНйсайоп Ьу 81тш1а1ес1 Епиввюп оГ КжНа1юп — усиление света с помощью вынужденного излучения). Лазеры генерируют в видимой, инфракрасной и ближней ультрафиолетовой областях (в оптическом диапазоне). Идея качественно нового принципа усиления и генерации электромагнитных волн, примененная в мазерах (генераторы и усилители, работающие в сантиметровом диапазоне радиоволн) и лазерах, принадлежит советским ученым Н. Г. Басову (р. 1922) и А. М. Прохорову (р. 1916) и американскому физику Ч. Таунсу (р. 1915), удостоенным Нобелевской премии 1964 г. Важнейшими из существующих типов лазеров являются твердотельные, газовые, полупроводниковые и жидкостные (в основу такого деления положен тип активной среды). Более точная классификация учитывает также и методы накачки — оптические, тепловые, химические, электроионизационные и др. Кроме того, необходимо принимать во внимание и режим генерации — непрерывный или импульсный.
Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделяющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок). твердотельным лазером (1960; \США),
работающим в видимой области спектра (длина волны излучения 0,6943 мкм), был
рубиновый лазер (Т. Мейман (р,1927)). В нем инверсная населенность уровней осуществляется по трехуровневой схеме, предложенной в 1955 г. Н. Г. Басовым и А. М. Прохоровым.
При интенсивном облучении рубина светом мощной импульсной лампы атомы хрома переходят с нижнего уровня на уровни широкой полосы 3 (рис. 310). Так как время жизни атомов хрома в возбужденных состояниях мало (меньше 10-7 с), то осуществляются либо спонтанные переходы 3-1, либо наиболее вероятные безызлучательные переходы на уровень 2 (он называется метастабильным) с передачей избытка энергии решетке кристалла рубина. Переход 2-»-/ запрещен правилами отбора, поэтому длительность возбужденного состояния 2 атомов хрома порядка 10~3 с, т. е. примерно на четыре порядка больше, чем для состояния 3. Это приводит к «накоплению» атомов хрома на уровне 2. При достаточной мощности накачки их концентрация на уровне 2 будет гораздо больше, чем на уровне /, т. е. возникает среда с инверсной населенностью уровня 2.
Каждый фотон, случайно родившийся при спонтанных переходах, в принципе может инициировать (порождать) в активной среде множество вынужденных переходов 2-»-/, в результате чего появляется целая лавина вторичных фотонов, являющихся копиями первичных. Таким образом и зарождается лазерная генерация. Однако спонтанные переходы носят случайный характер, и спонтанно рождающиеся фотоны испускаются в разных направлениях. Первым газовым лазером непрерывного действия (1961) был лазер на смеси атомов неона и гелия. Газы обладают узкими линиями поглощения, лампы же излучают свет в широком интервале длин волн; следовательно, применять их в качестве накачки невыгодно, так как используется только часть мощности лампы. Поэтому в газовых лазерах инверсная населенность уровней осуществляется электрическим разрядом, возбуждаемым газах.
В гелий-неоновом лазере накачка происходит в два этапа: гелий служит носителем энергии возбуждения, а лазерное изучение дает неон. Электроны, образующиеся в разряде, при столкновениях возбуждают атомы гелия, которые переходят в возбужденное состояние 3 (рис.311). При столкновениях возбужденных атомов гелия с атомами неона происходит их возбуждение и они переходят на один из верхних уровней неона, который расположен вблизи соответствующего уровня гелия. Переход атома неона к верхнего уровня 3 на один из нижних уровней 2 приводит к лазерному излучению с лямда =0,6323 МКМ
Билет №13
2) Дифракция света. Дифракция Френеля от диска и круглого отверстия. Зонная пластинка. Характерные области дифракции света.
Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями, например, в близи границ прозрачных или непрозрачных тел, сквозь малые отверстия. Дифракция, в частности, приводит к огибанию световыми волнами препятствий, и проникновению света в область геометрической тени. Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в рез-тате суперпозиции волн. Перераспределение интенсивности, возникающее вследствие суперпозиции волн, возбуждаемых когерентными источниками, принято называть дифракцией волн. Поэтому говорят, например, об интерференционной картине от двух узких щелей и о дифракционной картине от одной щели. Различают два вида дифракции. Если источник 8 и точка наблюдения Р расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку Р, образуют практически параллельные пучки, говорят о дифракции Фраунгофера (диф. в параллельных лучах). В противном случае говорят о диф. Френеля.
Дифракция Френеля от круглого отверстия и от диска. 1. От круглого отверстия. Поставим на пути сферической световой волны (т.е. для которой А убывает как 1/r, r – расстояние,, отсчитываемое вдоль направления распространения световой волны) непрозрачный экран. Расположим его так, чтобы перпендикуляр, опущенный из источника света S,попал в центр отверстия. На продолжении этого перпендикуляра возьмем точку Р. При радиусе отверстия r0, значительно меньшем, чем указанные на рис. длины a и b, длину a можно считать равной расстоянию от источника S, допреграды, а длину b - от расстояния преграды до Р. Если расстояния а и b довлетворяют соотношению: r0 =√abm(лямда)/(a+b) , где m- целое число, то отверстие оставит открытым ровно m первых зон Френеля, построенных для т. Р. Следовательно, число открытых зон будет:
, а амплитуда в точке Р будет
Равна , знак минус берется, если m - нечетное и плюс - четное. 2. Дифракция от круглого диска. Поместим между источником света S и точкой наблюдения Р непрозрачный диск радиуса r0 . Если диск
закроет m первых зон Френеля, амплитуда в точке Р будет равна:
Зонные пластинки. Из теории Френеля (световая волна, возбуждаемая каким-либо источником S, может быть представлена как р-тат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками, такими источниками могут служить бесконечно малые элементы любой замкнутой пов-ти, охватывающей источник S). следует, что в том случае, когда в отверстии кладывается только одна зона Френеля, амплитуда колебаний в точке М А=А1 т.е.в отсутствие непрозрачного экрана с отверстием (соответственно
Амплитуда А можно значительно увеличить с помощью с помощью зонной пластинки – стеклянной пластинки, но пов-ть которой так нанесено непрозрачное покрытие, что оно закрывает все четные зоны Френеля и оставляет открытыми все нечетные зоны (либо наоборот). Если общее число зон, уменьшающихся на пластинке, равно 2к, то
Если 2к не слишком велико, то A2k-1 ≈A1 и
, т.е. освещенность экрана в точке М в к2
раз больше, чем при беспрепятственном распространении света от источника в точку М. Зонная пластинка действует на свет подобно собирающей линзе.
3) Строение атомного ядра. Основные характеристики атомного ядра. Энергия связи, ядерные силы.
Э. Резерфорд, исследуя прохождение а-частиц с энергией в несколько мегаэлектрон-вольт через
тонкие пленки золота пришел к выводу о том, что атом состоит из положительно заряженного ядра
и окружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что
атомные ядра имеют размеры примерно 10-14
Атомное ядро состоит из элементарных частиц — протонов и нейтронов.
Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя
ш — масса электрона. Нейтрон (п) — нейтральная
Протоны
и нейтроны называются нуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называется массовым числом А. Атомное ядро характеризуется зарядом Z S, где е — заряд протона, Z — зарядовое число ядра, равное числу прогонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Ядро обозначается тем же символом, что и
нейтральный атом: |
где X — символ
химического элемента, Z — атомный номер (число протонов в ядре), А —массовое число (число нуклонов в ядре).
Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. Ядра с одинаковыми Z, но разными А называются изотопами, а ядра с одинаковыми А, но разными Z—изобарами. Радиус ядра задается эмпирической формулой
Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра.
Согласно энергия связи нуклонов в ядре
'где тр, тп, тя — соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы ядер, а массы m атомов. Поэтому для энергии связи ядра пользуются формулой
mh — масса атома водорода. Так как mn больше mр на величину mе, то первый член в квадратных скобках включает в себя массу Z электронов. Но так как масса атома т отличается от массы ядра т„ как раз на массу Z электронов, то вычисления по формулам (252.1) и (252.2) приводят одинаковым результатам. Величина















