2 (1022363)
Текст из файла
Билет №2.
2) Дифракция в параллельных лучах (дифракция Фраунгофера). Дифракция Фраунгофера на одной щели.
Дифракция Фраунгофера наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызывающего дифракцию. Параллельный пучок создают, помещая источник света в фокусе собирающей линзы. Дифракционную картину с помощью второй собирающей линзы, установленной за препятствием, фокусируют на экран.
Дифракция Фраунгофера плоской монохроматической волны на одной щели шириной a.
Оптическая разность хода Δ=a*sinφ. Разобьем открытую часть волновой поверхности на зоны Френеля. Все точки волнового фронта в плоскости щели имеют одинаковую фазу и амплитуду колебаний. Поэтому суммарная интенсивность колебаний от двух соседних зон равна 0.
1) если число зон Френеля четное, то: a*sinφ=±mλ (m=1,2,3…) – условие дифракционного минимума (полная темнота).
2) если число зон Френеля ytчетное, то: a*sinφ=±(2m+1)λ/2 (m=1,2,3…) – условие дифракционного максимума.
В направлении φ=0 щель действует как одна зона Френеля и в этом направлении свет распространяется с наибольшей интенсивностью – центральный дифракционный максимум.
Распределение интенсивности на экране, получаемое вследствие дифракции, называется дифракционным спектром.
3) Уравнение Шредингера. Собственные функции и собственные значения. Стационарное уравнение Шредингера. Квантово-механическое представление свободно движущейся частицы.
i*ћ* ∂ψ/ ∂t = - ћ^2 *Δψ/ 2m + U(x,y,z,t)* ψ
m – масса микрочастицы, Δ - оператор Лапласа (в декартовых координатах оператор Лапласа имеет вид Δ= ∂^2/∂x^2 + ∂^2/∂y^2 + ∂^2/∂z^2), U(x,y,z,t) − функция координат и времени, описывающая воздействие на частицу силовых полей.
Уравнение называется общим уравнением Шредингера. Оно дополняется условиями, накладываемыми на функцию Ψ :
1) Ψ − конечная, непрерывная и однозначная.
2) производные от Ψ по x, y, z, t непрерывны.
3) функция |Ψ|^2 должна быть интегрируема.
ћ^2 *Δψ/ 2m + (E - U(x,y,z,t))* ψ = 0
Это уравнение не содержит времени и называется стационарным уравнением Шредингера.
Физический смысл имеют только регулярные волновые функции — конечные,
однозначные и непрерывные вместе со своими первыми производными. Эти
условия выполняются только при определенном наборе E . Эти значения
энергии называются собственными. Решения, которые соответствуют
собственным значениям энергии, называются собственными функциями.
Собственные значения E могут образовывать как непрерывный, так и
дискретный ряд. В первом случае говорят о непрерывном (или сплошном)
спектре, во втором — о дискретном спектре.
Свободная частица − движется с постоянной скоростью V в отсутствии силовых полей, т.е. U(x, y, z)≡0. Уравнение Шредингера примет вид: ∂^2 ψ /∂x^2 + k^2 ψ =0, где k^2=2mE / ћ^2
Частное решение ψ(x) = A0*cos(kx);
в комплексной форме - ψ(x) = A0*e^(ikx)+B0*e^(-ikx)
ψ(x,t) = A0*e^[-i(ωt - kx)]+B0*e^[-i(ωt + kx)] = A0*e^[-i/ ћ *(Et - px)]+B0*e^[- i/ ћ (Et + px)] – полная волновая ф-ия.
Это есть суперпозиция двух волн Де Бройля, распространяющихся одна в положительном, другая в отрицательном направлениях, что соответствует движение частицы вдоль (B0=0) или против (A0=0) оси x.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.