Главная » Все файлы » Просмотр файлов из архивов » Документы » Лекции по физике. Термодинамика

Лекции по физике. Термодинамика, страница 5

2017-07-09СтудИзба

Описание файла

Файл "Лекции по физике. Термодинамика" внутри архива находится в папке "Лекции по физике. Термодинамика". Документ из архива "Лекции по физике. Термодинамика", который расположен в категории "". Всё это находится в предмете "физика" из 2 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Лекции по физике. Термодинамика"

Текст 5 страницы из документа "Лекции по физике. Термодинамика"

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении и при этом система возвращается в исходное состояние и в окружающей среде и в этой системе не происходит никаких изменений. Например, незатухающие колебания. Заметим, что равновесные процессы называют также обратимыми.

Всякий процесс, не удовлетворяющий этим условиям, называется необратимым.(Заметим, что все процессы, сопровождающиеся трением, являются необратимыми).

4.9. Цикл Карно

В 1824 г. французский физик и инженер Н. Карно (1796-1832) опубликовал единственную работу, в которой теоретически проанализировал обратимый наиболее экономичный цикл, состоящий из двух изотерм и двух адиабат. Его называют циклом Карно, в котором в качестве рабочего тела используют идеальный газ, заключенный в сосуд с подвижным поршнем.

Цикл Карно изображен на рис.8, где изотермическое расширение и сжатие заданы соответственно кривыми 1-2 и 3-4, адиабатическое расширение и сжатие – кривыми 2-3 и 4-1.


Согласно (23) КПД цикла Карно =А/Q=( Q1-Q2)/ Q1= 1- Q2/Q1, где Q1- количество теплоты, полученное газом от нагревателя, температура которого Т1, Q2- количетво теплоты, отданное газом холодильнику, температура которого Т2. Карно показал, что для такого цикла

=(Q1-Q2)/Q1=(Т12)/Т1=1-Т21, (24)

т.е. КПД определяется только температурами нагревателя и холодильника. Карно предположил, что этот результат справедлив для любых термодинамических систем.

Обратный цикл Карно положен в основу действия тепловых насосов. Тепловые насосы должны как можно больше тепловой энергии отдавать горячему телу, например системе отопления. Большая часть этой энергии отбирается от окружающей среды с низкой температурой и меньшая часть – получается за счет механической работы, производимой, например компрессором.

4.10. Энтропия

4.10.1. Энтропия в термодинамике

При изучении ПНТ ( ) отмечалось , что dU является полным дифференциалом (из математики известно, что дифференциал dU называется полным, если интеграл не зависит от пути интегрирования и, в частности, интеграл по замкнутому пути или контуру L =0), а Q и А не являются полными дифференциалами.

Из математики также известно, что величина, на которую надо умножать некоторое выражение, чтобы оно стало полным дифференциалом, называется интегрирующим множителем. В термодинамике доказывается, что для обратимого процесса таким интегрирующим множителем является 1/Т и тогда Q будет являться полным дифференциалом некоторой пока неизвестной нам функции состояния S системы, т.е. Q/Т=dS. (25)

Определенную таким образом функцию состояния S термодинамической системы называют энтропией, измеряется она в Дж/К. Из (25) видно, что dS и Q имеют один и тот же знак. Это позволяет по характеру изменения энтропии судить о направлении процесса теплообмена. Понятие энтропии было введено в 1865 г. Клаузиусом.

ПНТ (8) для идеального газа произвольной массы m с учетом формул U=(i/2)RT=CVT, CV=(i/2)R, PV=RT (=m/M – число молей) принимает вид и полный дифференциал энтропии

dS=Q/Т=(CVdT/T+RdV/V) =(CVdlnT+RdlnV) (26)

Так как для постоянной массы идеального газа PV/T=const, то

lnP+lnV-lnT=const, а dlnP+dlnV-dlnT=0 и выражение (26) можно переписать в двух эквивалентных ему формах

dS=[(CV+R)dlnT-RdlnP]=[CP(dT/T)-R(dP/P)], (27)

dS=[(CV+R)dlnV+CVdlnP]=[CP(dV/V)+CV(dP/P)]. (28)

Если система переходит из состояния 1, характеризующегося параметрами P1, V1, T1, в состояние 2, характеризующееся параметрами P2, V2, T2, то изменение энтропии согласно (26) – (28) S=S2-S1= =[CVln(T2/T1) +Rln(V2/V1)]=

= [CPln(T2/T1) -Rln(P2/P1)]= [CPln(V2/V1)+ CVln(P2/P1)] . (29)

В частности, если процесс круговой, то P2=P1, V2=V1, T2=T1, из (29) следует, что

, (30)

т.е. действительно dS=Q/T является полным дифференциалом функции состояния S – энтропии.

Так как для адиабатического процесса Q=TdS=0, то, следовательно, dS=0 и S=const. Таким образом, обратимый адиабатический процесс представляется собой изоэнтропийный процесс.

Формулы (26)-(29) позволяют построить термодинамические диаграммы T-S, см. рис.9. Пусть точка О изображает начальное состояние идеального газа, тогда

п рямая 1-1 соответствует изотермическому процессу (0-1 – расширение и уменьшение давления, 0-1 - сжатие и увеличение давления). Прямая 2-2 соответствует адиабатическому (изоэнтропийному) процессу (0-2 – сжатие и увеличение давления и температуры, 1-2 - расширение и уменьшение давления и температуры). Изохорный процесс изображен линией 3-3 (0-3 – нагревание и увеличение давления, 0-3 - охлаждение и уменьшение давления).

Изобарический процесс изображен линией 4-4 , идущей положе изохоры 3-3 (0-4 – нагревание и расширение, 0-4 – охлаждение и сжатие).

Итак, энтропию S можно рассматривать как точно такой же параметр, как и три другие параметра P, V, T. Подобно тому как уравнение состояния идеального газа PV=RT позволяет выразить, например Т, через другие параметры P и V, так и выражение (29) дает возможность выразить S через другие параметры системы P, V и Т.

4.10.2. Энтропия с кинетической точки зрения. Третье начало термодинамики

Энтропия, введенная здесь термодинамически, успешно используется при вычислениях в термодинамике.

Однако, существует и другое толкование энтропии. С кинетической точки зрения энтропию лучше всего определить как меру неупорядоченности системы. Когда мы охлаждаем систему (например, газ) при постоянном объеме, мы непрерывно извлекаем из нее тепло и, следовательно, энтропию [см.формулу (25) и ее комментарий], т.е. Q<0 и dS<0. При этом тепловое движение, которое создает неупорядоченность, становится все менее интенсивным и упорядоченность системы повышается. Когда газ конденсируется в жидкость, молекулы занимают более определенные положения друг относительно друга, в отличие от их положения в газовой фазе. Причем скачкообразное уменьшение беспорядка соответствует скачкообразному уменьшению энтропии. При дальнейшем понижении температуры жидкости тепловое движение, которое создает неупорядоченность, становится все менее интенсивным, и происходит дальнейшее уменьшение энтропии.

Когда жидкость отвердевает, молекулы в кристалле занимают вполне определенные положения одна относительно другой, так что неупорядоченность скачком уменьшается. Соответственно при отвердевании выделяется тепло и энтропия также убывает скачком. При абсолютном нуле тепловое движение полностью прекращается, следовательно, неупорядоченность будет также равна нулю. В связи с этим энтропию всех веществ при T=0 принимают равной нулю.

Утверждение: энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина, т.е. называют третьим началом термодинамики или теоремой Нернста-Планка (1906 г, 1910 г).

Представление об энтропии как мере неупорядоченности системы хорошо описывает ее зависимость не только от температуры, но и от объема и других параметров системы.

4.10.3. Энтропия в равновесной статистической физике

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы или число микросостояний, осуществляющих данное макросостояние. По определению W1 , т.е. термодинамическая вероятность не есть верояность Р в математическом смысле (Р1).

Например, макросостояние моля кислорода, соответствующее Р=1 физической атмосфере и Т=300К, может быть осуществлено числом микросостояний W= . Представить себе это число совершенно невозможно.

Больцман в 1872 г. показал, что энтропия системы и термодинамическая вероятность связаны между собой следующей формулой

S=klnW, (31)

где k – постоянная Больцмана. Для выше приведенного примера S=200 Дж/К.

4.11. Второе начало термодинамики (ВНТ)

Выражая всеобщий закон сохранения и превращения энергии, первое начало термодинамики (ПНТ) не позволяет определить направление протекания процессов. Действительно, процесс самопроизвольной передачи теплоты от холодного тела к горячему не противоречит ПНТ, если только уменьшение внутренней энергии холодного тела равно энергии, полученной горячим телом. Однако, опыты показывают, что такой процесс не происходит (раскаленный кусок железа, опущенный в воду, не нагревается за счет охлаждения воды).

Обобщение огромного экспериментального материала привело к необходимости формулирования второго, третьего и нулевого начал термодинамики.

ВНТ в отличие от ПНТ не является всеобщим законом природы. Оно справедливо только по отношению к термодинамическим системам. Существует несколько эквивалентных формулировок ВНТ:

1. Невозможен процесс, единственным результатом которого является передача теплоты от холодного тела к горячему (формулировка Клаузиуса, 1850 г.).

2. Невозможен процесс, единственным результатом которого является совершение работы за счет охлаждения одного тела (формулировка Томсона, 1851 г., в 1892 г Томсон получил титул лорда Кельвина).

Соответственно этой формулировке была доказана невозможность вечного двигателя второго рода, который целиком превращал бы в работу теплоту, извлекаемую из окружающих тел (океана, атмосферного воздуха и др.) Согласно формуле (24) для него было бы Q2=0, A=Q1, =1. Таким образом, это невозможно. Заметим, что ПНТ не противоречило бы создание такого двигателя.

3. Энтропия изолированной системы не может убывать при любых происходящих в ней процессах, т.е. dS0, где знак равенства относится к обратимым процессам, а знак больше – к необратимым процессам.(Формулировка Клаузиуса, 1865 г.) В 1876 г. Клаузиус дал наиболее общую формулировку ВНТ: при реальных (необратимых) адиабатических процессах dS>0, т.е. энтропия возрастает, достигая максимального значения в состоянии равновесия.

Формула Больцмана (31) S=klnW позволяет дать статистическое истолкование третьей формулировки ВНТ: Термодинамическая вероятность W состояния изолированной системы при всех происходящих в ней процессах не может убывать.

Итак, ВНТ является статистическим законом.

Оно выражает необходимые закономерности хаотического движения большого числа частиц, входящих в состав изолированной системы.

Лекция 6. Реальные газы. Фазовые переходы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее