Главная » Все файлы » Просмотр файлов из архивов » Документы » Лекции по физике. Термодинамика

Лекции по физике. Термодинамика, страница 3

2017-07-09СтудИзба

Описание файла

Файл "Лекции по физике. Термодинамика" внутри архива находится в папке "Лекции по физике. Термодинамика". Документ из архива "Лекции по физике. Термодинамика", который расположен в категории "". Всё это находится в предмете "физика" из 2 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Лекции по физике. Термодинамика"

Текст 3 страницы из документа "Лекции по физике. Термодинамика"

3.1 Диффузия

Это перенос массы из мест с большей плотностью к местам с меньшей плотностью.

Фик (1855 г) установил, что перенесенная масса dm через расположенную перпендикулярно направлению переноса вещества площадку dS за время dt

dm= - D(d/dx) dS dt, (1)

где d/dx характеризует скорость изменения плотности на единицу длины x,

D – коэффициент диффузии.

Можно показать, что для газов . (2)

Знак минус в (1) указывает, что перенос массы при диффузии происходит в направлении убывании плотности, т. е. вдоль оси ох, если 2>1 (d/dx<0).

    1. Теплопроводность

Это перенос теплоты (внутренней энергии) от более нагретых мест к менее нагретым. Фурье (1822 г.) установил, что количество теплоты , которое переносится вследствие теплопроводности через площадку dS за время

dQ= -(dT/dx) dS dt, (3)

где характеризует скорость изменения температуры Т на единицу длинны х, (греч. хи) – коэффициент теплопроводности. Можно показать, что для газов

(4)

где сV - удельная теплоемкость при постоянном объеме газа.

Знак минус в (3) указывает, что при теплопроводности перенос внутренней энергии происходит в направлении убывания температуры, т. е. вдоль оси ОХ, если .

3.3 Внутреннее трение (вязкость)

Оно возникает между слоями жидкости или газа, движущимися упорядоченно с различными скоростями u. Из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается, что приводит к торможению слоя, движущегося быстрее и ускорению слоя, движущегося медленнее.

Согласно закону Ньютона (1687 г) сила внутреннего трения между слоями газа (жидкости) , (5)

где (du/dx) характеризует быстроту изменения скорости u на единицу длины x , S – площадь, на которую действует сила (площадка S перпендикулярна х), – коэффициент внутреннего трения (динамическая вязкость)

Можно показать, что (6)

Знак минус в (5) указывает, что импульс переносится в направлении убывания скорости слоев u.

Анализ формул (2), (4), (6) показывает, что

<>/(cV)=1. (7)

Используя эти формулы, можно по найденным из опыта одним величинам, определить другие.

Лекция 4,5. Физические основы термодинамики

Термодинамика, как и молекулярная физика, занимается изучением физических процессов, происходящих в макроскопических системах, т.е. в телах, содержащих огромное число микрочастиц, взаимодействующих друг с другом и внешними телами.

Задачей термодинамического метода изучения состояний макроскопических систем является установление связей между непосредственно наблюдаемыми величинами, такими, как давление, объем, температура, концентрация раствора, напряженность электрического или магнитного поля, световой поток и т.д. Никакие величины, связанные с атомно-молекулярной структурой вещества ( размеры атома или молекулы, их масса, количество и т.д.), не входят в рассмотрение при термодинамическом подходе к решению задач.

Термодинамический метод, не связанный с модельными представлениями, обладает большей общностью, отличается простотой и ведет, после ряда простых математических процедур, к решению целого ряда конкретных задач, не требуя никаких сведений о свойствах атомов или молекул.

Однако при термодинамическом рассмотрении остается нераскрытым внутренний (атомно-молекулярный) механизм явлений. По этой причине в термодинамике, как правило, бессмысленны вопросы “почему”? Например, почему при быстром растяжении медная проволока охлаждается, а резиновый жгут нагревается? Мы должны удовлетворить этим результатам, а механизм, ведущий к нему, остается скрытым от нас.

В основе термодинамики лежат принципы, являющиеся обобщение опытных данных: принцип температуры (часто называемый нулевым началом термодинамики), принцип энергии (I начало), принцип энтропии (II начало) и постулат Нернста (III начало термодинамики).

4.1. Термодинамические системы. Равновесные состояния и равновесные процессы

Будем называть термодинамической системой любое макроскопическое тело, находящееся в равновесном или близком к равновесному состоянию.

Состояния любой термодинамической системы могут быть заданы с помощью ряда параметров, например, для газа P, V, T , для жидкости -  (коэффициент поверхностного натяжения),  (поверхность пленки), Т и т.д.

Следует заметить, что не в любом состоянии системы все ее параметры имеют определенный смысл. Например, представим себе сосуд, разделенный на две половины перегородкой с краном, и пусть вначале в левой половине находится газ, а в правой – вакуум. Если мы откроем кран, то из него вырвется струя газа, и в первые моменты этого процесса объем газа будет неопределенным – плотность газа в правой половине сосуда будет меняться от точки к точке по какому-то сложному закону и указать границы объема, в котором находится газ, невозможно.

Можно, например, представить себе систему, температура которой меняется от точки к точке, или газ, в разных точках которого давление различно. Такие состояния называются неравновесными.

Обычно по прошествии некоторого времени устанавливается состояние, в котором каждый такой параметр имеет одно и то же значение во всех точках системы и остается неизменным сколь угодно долго, если не меняются внешние условия. Такие состояния называются равновесными.

Процесс перехода термодинамической системы из неравновесного состояния в равновесное называется процессом релаксации, он характеризуется временем релаксации.

Представим себе процесс, протекающий в термодинамической системе со скоростью, значительно меньшей скорости релаксации; это значит, что на любом этапе этого процесса значения всех параметров будут успевать выравниваться, и такой процесс будет представлять собой последовательность бесконечно близких друг к другу равновесных состояний. Такие достаточно медленные процессы принято называть равновесными или квазистатическими. Ясно, что все реальные процессы являются неравновесными и могут лишь в большей или меньшей степени приближаться к равновесным.

Заметим, что равновесный процесс может идти как в прямом, так и в противоположном направлениях. В связи с этим равновесные процессы называют также обратимыми. В дальнейшем мы будет рассматривать только равновесные процессы.

Для каждой термодинамической системы существует состояние термодинамического равновесия, которое она при фиксированных внешних условиях достигает.

Например, чайник, снятый с плиты, сам остывает до комнатной температуры.

Сформулированный признак термодинамических систем настолько важен, что он получил название нулевого начала термодинамики. (Это начало имеет такой странный номер потому, что лишь после того как были открыты первое и второе начала термодинамики, ученые осознали, что этот практически очевидный постулат нужно поставить впереди.) По существу, нулевое начало термодинамики постулирует существование температуры.

4.2. Внутренняя энергия идеального газа. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы

Важной характеристикой термодинамической системы является ее внутренняя энергия Uэнергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т.д.) и энергия взаимодействия этих частиц.

К внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

В курсе физики уже встречалось понятие числа степеней свободы i: это число независимых координат, полностью определяющих положение тела (материальной точки, системы материальных точек) в пространстве. Так, например, положение материальной точки определяется тремя координатами (x, y, z), следовательно, i=3. Тонкий стержень имеет 5 степеней свободы (x, y, z, , ), т.е. 3 поступательные и 2 вращательные, твердое тело имеет 6 степеней свободы (x, y, z, , , ), т.е. 3 поступательные и 3 вращательные.

С учетом этого для одноатомных молекул газа (He, Ne, Ar …) i=3, для двухатомных молекул газа (H2, O2, N2 …) с жесткой связью атомов i=5, для трех- и более атомных молекул газа с жесткой связью атомов (CO2, NH …) i=6.

Естественно, что жесткой связи между атомами не существует – атомы могут совершать колебания. С учетом этого полное число степеней свободы i=i+2iколеб. В классической теории рассматривают молекулы с жесткой связью атомов, для них iколеб.=0.

Итак, независимо от числа степеней свободы молекул, три степени свободы всегда поступательные. Ни одна из них не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <Wk> [см.(16) в лекции 1,2], т.е.

<Wk>/3 = kT/2.

Важнейший закон классической статистической физики – закон равномерного распределения энергии по степеням свободы – утверждает: на каждую степень свободы молекулы в среднем приходится одинаковая кинетическая энергия, равная kТ/2.

Следовательно, средняя кинетическая энергия молекулы, имеющей i степеней свободы, <Wk> = kT . (1)

Так как в идеальном газе взаимная потенциальная энергия молекул равна нулю (т.е. молекулы между собой не взаимодействуют), то внутренняя энергия U представляет собой кинетическую энергию его молекул.

Для одного моля

, (2)

для произвольной массы m газа

, (3)

где М – масса моля, =m/M – число молей.

Таким образом, внутренняя энергия идеального газа пропорциональна температуре газа и зависит от числа степеней свободы его молекул.

4.3. Работа и теплота

Рассмотрим термодинамическую систему, для которой механическая энергия не изменяется, а изменяется лишь ее внутренняя энергия. Внутренняя энергия закрытой системы (т.е. системы, которая не обменивается веществом с внешней средой; в 4,5 лекциях мы изучаем только закрытые системы) может изменяться качественно различными способами:

1. Путем совершения работы внешними телами над системой, например, при сжатии газа температура его повышается и, следовательно, изменяется (увеличивается) его внутренняя энергия.

2. Путем теплообмена, т.е. процесса обмена внутренними энергиями при контакте тел с различными температурами. Энергию, передаваемую от одних тел к другим в процессе теплообмена, называют теплотой.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее