Лекции по физике. Термодинамика (1019842), страница 8
Текст из файла (страница 8)
где R=kNA=8.31 Дж/мольК - универсальная газовая постоянная. Отсюда молярная теплоемкость твердого тела
C=dU/dT=3R25 Дж/(мольК). (3)
Этот закон был эмпирически (опытным путем) установлен в 1919 г. Дюлонгом и Пти. Он утверждает:
Молярная теплоемкость для всех простых твердых тел равна 3R, т.е.
Для многих веществ этот закон хорошо выполняется, хотя некоторые вещества (алмаз С, Ве, В) имеют значительные отклонения от вычисленных теплоёмкостей. Опыт также показал, что С зависит от температуры и вблизи нуля кельвин для всех веществ С . На рис. 1 представлена характерная экспериментально полученная зависимость С от Т. Расхождение опытных и теоретических значений теплоёмкостей объяснили, исходя из квантовой теории теплоёмкости, Эйнштейн и Дебай.
8.2 Понятие о квантовой теории теплоёмкости Эйнштейна и Дебая
Эйнштейн рассматривал кристалл как систему из N атомов, каждый из которых является квантовым гармоническим осциллятором (осциллятор - это физическая система, совершающая колебания). Колебания всех атомов происходят независимо друг от друга с одинаковой частотой . Средняя энергия Е, приходящая на одну степень свободы атома - гармонического квантового осциллятора:
Внутренняя энергия моля твёрдого тела U = 3NAE = ,
отсюда молярная теплоёмкость твёрдого тела
Этот результат качественно описывает зависимость С от Т, однако в области низких температур возникают расхождения с экспериментально полученными зависимостями С от Т.
Дебай развил теорию Эйнштейна. Он учёл, что:
-
колебания атомов в кристаллической решётке не являются независимыми и
2) основной вклад в энергию тепловых колебаний кристалла при низких температурах вносят колебания низких частот.
Таким образом, тепловое возбуждение твёрдого тела Дебай описал в виде упругих (звуковых) волн, распространяющихся в кристалле. Упругие волны в кристалле имеют квантовые свойства, проявляющиеся в том, что существует наименьшая порция - квант энергии волны с данной частотой . Упругим волнам в кристалле сопоставляют фононы, обладающие энергией Е = h. Фонон есть квант энергии звуковой (упругой) волны. Фононы являются квазичастицами, ведущими себя подобно микрочастицам. Заметим, что квазичастицы, в частности, фононы, не могут возникать и распространяться в вакууме, они существуют только в среде. Таким образом, квантование упругих волн привело к представлениям о фононах подобно тому, как ранее квантование электромагнитного излучения привело к представлению о фотонах.
Как указывалось в предыдущей лекции, фононы относятся к классу бозонов. Система бозонов описывается распределением Бозе-Эйнштейна (7.5). Для фононов = 0 и n = , поэтому эта функция входила в формулы (5) и (6) данной лекции, с учётом того, что Е = h.
Обозначим через dn число фононов с частотой в интервале от до +d, тогда внутренняя энергия кристалла (вывод опускается)
где макс = - максимальная частота фононов, N - число атомов в кристалле с объёмом V, v - скорость звука в кристалле, h, k - постоянные Планка и Больцмана.
При вычислении U вводится характеристическая температура Дебая ТD = hмакс/k и рассматриваются 2 предельных случая:
1.Высокие температуры Т>>TD (или kT>>hмакс). При этом и
. Для одного моля N = NA и молярная
теплоёмкость С = dU/dT = 3NAk = 3R, т. е. соответствует закону Дюлонга и Пти.
2.Низкие температуры T<<TD . В этом случае при вычислении интеграла вводится новая переменная х = h/(kT) и верхний предел заменяется на :
При выводе этой формулы было учтено, что интеграл равен . Молярная теплоёмкость
т. е. пропорциональна , что подтверждается на опыте. Таким образом, квантовая теория теплоёмкости Эйнштейна и Дебая объяснила теплоёмкость твёрдых тел.
8.3. Теплоёмкость электронного газа в металлах
В металлах теплоёмкость складывается из теплоёмкости ионной решётки (см. параграф 8.2.) и теплоёмкости свободных электронов - электронного газа., т. е. С = Cреш + Сэл . Если бы электронный газ был невырожденный (классический), то каждый электрон обладал бы средней кинетической энергией (3/2)kT и средняя энергия электронного газа в одном моле металла была бы равна (3/2)kTNA = (3/2)RT. Полная внутренняя энергия моля металла в этом случае была бы U = 3RT + (3/2)RT = (9/2)RT, а молярная теплоёмкость металла С = dU/dT = (9/2)R, т. е. в полтора раза больше теплоёмкости диэлектриков. Однако в действительности теплоёмкость металлов не отличается существенно от теплоёмкости неметаллических кристаллов.
Это противоречие устраняется квантовой теорией.
Средняя энергия теплового движения, равная kT, составляет при комнатной температуре 1/40 эВ. Такая энергия может возбудить только малую часть электронов, находящихся на самых верхних энергетических уровнях, примыкающих к уровню Ферми. Энергия Ферми EF для хорошо проводящих металлов составляет 6 эВ [см. (7.4) и комментарий этой формулы]. Действительно, расчёт показывает, что молярная теплоёмкость электронного газа
что примерно в 150 раз меньше теплоёмкости твёрдого тела С = 3R при Т = 300 К.
Относительный вклад теплоёмкости электронного газа в теплоёмкость металла будет увеличиваться с уменьшением Т, когда теплоёмкость С, пропорциональная [см. (9)], уменьшается и она будет сравнима или даже будет меньше Сэл , которая пропорциональна Т.
Таким образом, квантовая теория объяснила и теплоёмкость металлов.
Лекции 9,10. Электрические свойства кристаллов
9.1. Классическая электронная теория электропроводности металлов
Опыты, проведенные Рикке в 1901 г., Мандельштамом и Папалекси в 1913 г., Толменом и Стюартом в 1916 г. показали, что носителями тока в металлах являются электроны. Ток в металлах можно вызвать крайне малой разностью потенциалов. Это даёт основание считать, что электроны перемещаются по металлу практически свободно. Появление этих свободных электронов объясняется тем, что при образовании кристаллической решётки от атомов металлов легко отрываются слабее всего связанные валентные электроны. Можно показать, что концентрация их достигает электронов в
. При такой высокой концентрации электронов средняя сила, действующая на электрон со стороны всех остальных электронов и ионов, равна нулю и, следовательно, электроны можно считать свободными частицами и их взаимодействие с ионами можно рассматривать как ряд последовательных соударений.
В этом приближении система электронов может анализироваться как система одноатомных молекул идеального газа. Исходя из этого, Друде и позднее Лоренц распространили результаты кинетической теории газов (см лекции 1,2) на свободные электроны - на так называемый электронный газ и получили законы Ома, Джоуля-Ленца в дифференциальной форме.
В позапрошлом семестре изучались эти законы [см. конспект лекций, ч. II, формулы (16), (38) в лекциях 6,7].
Плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике, т.е.
- закон Ома в дифференциальной форме. (1)
Удельная тепловая мощность тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряжённости электрического поля в проводнике, т. е.
- закон Джоуля-Ленца в дифференциальной форме, (2)
где в (1) и (2) - удельная электропроводность ( = 1/).
Друде и Лоренц показали, что для металлических проводников
где n - концентрация свободных электронов, e и m - заряд и масса электрона, -средняя длина свободного пробега электрона, v - средняя скорость теплового движения электрона. Согласно формуле (30) в лекции 1,2 v и при Т = 300 К, (масса электрона
),
.
Скорость же направленного движения (скорость дрейфа электрона), возникающего благодаря электрическому полю . Для
,
(заряд электрона
), vдр = = 0,78 мм/с, т. е. много меньше скорости теплового движения электрона.
Итак, классическая теория объяснила законы Ома, Джоуля-Ленца, Видемана-Франца. Вместе с тем она имеет ряд недостатков.
Строгий анализ с использованием квантовой теории показал, что не все валентные электроны свободно движутся по решётке с тепловыми скоростями, а лишь малая их часть. Подавляющее число валентных электронов в электропроводимости (как и в теплоёмкости) не участвуют. Это приводит к расхождениям между классической теорией и практикой. Например, из (3) следует, что
, а на практике в большом диапазоне изменения температур 1/Т.
Эти и другие расхождения объясняет квантовая теория.
9.2. Понятие о квантовой теории электропроводности металлов
Согласно квантовой теории электрон в металле не имеет точной траектории, его можно представить волновым пакетом с групповой скоростью, равной скорости электрона. Квантовая теория учитывает движение электрона в периодическом поле решётки, что приводит к появлению эффективной массы электрона . Расчёт, выполненный на основе этого, приводит к формуле