Лекции по физике. Термодинамика (1019842), страница 11
Текст из файла (страница 11)
Радиоактивность есть самопроизвольное изменение состава ядра, происходящее за время, существенно большее характерного ядерного времени (10-22с). Условились считать, что изменение состава ядра должно происходить не раньше, чем через 10-12 с после его рождения. Распады ядер часто происходят значительно быстрее, но такие распады не принято относить к радиоактивным. Время 10-12с в ядерных масштабах должно считаться очень большим. За такое время совершается множество внутриядерных процессов и ядро успевает полностью сформироваться.
Ядра, подверженные радиоактивным превращениям называют радиоактивными, а не подверженные - стабильными. Большая часть радиоактивных ядер получена искусственно путем бомбардировки мишеней различными частицами.
Различают - распад, - распад и - излучение.
1. При - распаде из ядра вылетает - частица (ядро атома гелия ):
.
2. При - распаде ядро испускает электрон или позитрон
. При электронном - распаде один из нейтронов ядра превращается в протон
и при этом из ядра вылетает электрон и электронное антинейтрино. При позитронном - распаде один из протонов ядра превращается в нейтрон
и при этом из ядра вылетает позитрон
и электронное нейтрино.
3. - излучением называется электромагнитное излучение, возникающее при переходе атомных ядер из возбужденных в менее возбужденные или основное состояния. - излучение обычно сопровождает ядерные реакции. Длины волн - излучения лежат в диапазоне 10-10210-13м, а энергия - квантов лежит в пределах от 10кэВ до 5МэВ.
11.5. Закон радиоактивного распада
Радиоактивный распад – явление статистическое, поэтому все предсказания носят вероятностный характер. Самопроизвольный распад большого числа ядер атомов подчиняется закону радиоактивного распада
N=N0exp(-t), (2)
где N0 – число нераспавшихся ядер в момент времени t=0; N – число нераспавшихся ядер в момент времени t; - постоянная радиоактивного распада, она характеризует вероятность распада ядер за 1с. Величина - является средним временем жизни изотопа, за время t= число нераспавшихся ядер убывает в е =2,72 раз. Вводят также понятие периода полураспада Т1/2 – время, за которое распадается половина радиоактивных ядер, т.е. N=N0/2. Подставляя это условие в (2), находим
N0/2=N0exp(-T1/2), отсюда
Т1/2=ln2/=0,693/=0,693. (3)
Период полураспада для естественно-радиоактивных элементов колеблется от 10-7 с до многих миллиардов лет. Активность радиоактивного вещества характеризует число распадов ядер в 1с:
А=|dN/dt|=N0exp(-t)=A0exp(-t). (4)
Единица активности в СИ – беккерель (Бк). 1 Бк – это активность, при которой за 1с происходит один распад ядра. Часто используется внесистемная единица активности – кюри (Ки), 1Ки=3,71010 Бк.
Поглощенная доза излучения – физическая величина, равная отношению энергии излучения к массе облучаемого вещества. Единица поглощенной дозы излучения – грей (Гр): 1 Гр = 1 Дж/кг – доза излучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.
Экспозиционная доза излучения – физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.
Единица экспозиционной дозы излучения – кулон на килограмм (Кл/кг); внесистемной единицей является рентген (Р): 1 Р = 2,5810-4 Кл/кг.
Биологическая доза – величина, определяющая воздействие излучения на организм. Единица биологической дозы – биологический эквивалент рентгена (бэр): 1 бэр – доза любого вида ионизирующего излучения, производящее такое же биологическое действие, как и доза рентгеновского или -излучения в 1 Р (1 бэр = 10-2 Дж/кг).
Мощность дозы излучения – величина, равная отношению дозы излучения к времени облучения. Различают: 1) мощность поглощенной дозы (единица – грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица – ампер на килограмм (А/кг)).
11.6. Ядерные реакции
Ядерными реакциями называют процессы превращения атомных ядер, вызванные их взаимодействием друг с другом или с элементарными частицами.
Как правило, в ядерных реакциях участвуют два ядра и две частицы. Одна пара ядро-частица является исходной, другая пара – конечной. Символическая запись ядерной реакции: А+а=B+b, где А и В – исходное и конечное ядра, а и b – исходная и конечная частицы в реакции.
Энергия ядерной реакции Q=с2[(mA+ma)-(mB+mb)]. Если (mA+ma)>(mB+mb), и Q>0, то энергия освобождается и реакция называется экзотермической. В противоположном случае энергия поглощается и реакция называется эндотермической.
Тяжелые ядра при взаимодействии с нейтронами могут разделяться на две приблизительно равные части – осколки деления. Такая реакция называется реакцией деления тяжелых ядер, например . В этой реакции наблюдается размножение нейтронов. Важнейшей величиной является коэффициент размножения нейтронов k. Он равен отношению общего числа нейтронов в каком-либо поколении к породившему их общему числу нейтронов в предыдущем поколении. Таким образом, если в первом поколении было N1 нейтронов, то их число в n-м поколении будет Nn=N1kn. При k=1 реакция деления стационарна, т.е. число нейтронов во всех поколениях одинаково – размножения нейтронов нет. Соответствующее состояние реактора называется критическим. При k>1 возможно образование цепной неуправляемой лавинообразной реакции, что и происходит в атомных бомбах. В атомных станциях поддерживается управляемая реакция, в которой за счет графитовых поглотителей число нейтронов поддерживается на некотором постоянном уровне.
Возможны ядерные реакции синтеза или термоядерные реакции, когда из двух легких ядер образуется одно более тяжелое ядро. Например, синтез ядер изотопов водорода – дейтерия и трития и образование ядра гелия: При этом выделяется 17,6 МэВ энергии, что примерно в четыре раза больше из расчета на один нуклон, чем в ядерной реакции деления. Реакция синтеза протекает при взрывах водородных бомб. Более 40 лет ученые работают над осуществлением управляемой термоядерной реакции, которая открыла бы доступ человечеству к неисчерпаемой “кладовой” ядерной энергии.
Лекция 12. Элементарные частицы и современная физическая картина мира
При введении понятия элементарных частиц первоначально предполагалось, что есть первичные, далее неделимые частицы, из которых состоит вся материя. Таковыми вплоть до начала 20 века считались атомы (слово “атом” в переводе с греческого означает “неделимый”). После того как была установлена сложная структура атомов, они перестали считаться элементарными частицами в указанном смысле слова. Такая же судьба постигла ядро, а затем протон и нейтрон, у которых была установлена внутренняя структура. Открывались новые и новые объекты (мюоны, пионы, нейтрино и др.), которые могли претендовать на роль элементарных частиц. Для большинства из них эти претензии были отклонены очень быстро. Но и в настоящее время мы с достоверностью не знаем, какие частицы являются действительно элементарными и есть ли всеобще элементарные частицы в первоначальном смысле этого слова.
Элементарными частицами сейчас условно называют большую группу мельчайших микрочастиц, не являющихся атомами или атомными ядрами(за исключением протонов – ядер атома водорода). Общее, что роднит все элементарные частицы, состоит в том, что все они являются специфическими формами материи, не ассоциированной в атомы и атомные ядра.
12.1. Взаимопревращаемость частиц
Характерной особенностью элементарных частиц является их способность к взаимным превращениям. Всего вместе с античастицами открыто более 350 элементарных частиц, и число их продолжает расти. Большинство элементарных частиц нестабильно – они спонтанно превращаются в другие частицы. В предыдущей лекции были рассмотрены превращения нейтронов и протонов. Для того чтобы объяснять свойства и поведение элементарных частиц, их приходится наделять кроме массы m, электрического заряда q, спина (собственного момента импульса) LS, магнитного момента Pm и времени жизни рядом дополнительных характерных для них величин (квантовых чисел): странность s, очарование c(его называют также шарм или чарм, от английского слова charm), красота b (в переводе с английского beauty), истинность t (от английского truth) и др.
Среднее время жизни частицы в свободном состоянии меняется в широких пределах: от 10-24с до бесконечности.
12.2. Классификация элементарных частиц
Все частицы (в том числе и неэлементарные и квазичастицы) разделяются на бозоны и фермионы(об этом упоминалось уже в лекции 7).
Бозонами называются частицы или квазицастицы, обладающие нулевым или целочисленным спином. Бозоны подчиняются статистике Бозе-Эйнштейна. К бозонам относятся: гипотетический гравитон (спин=2), фотон(спин=1), промежуточные векторные бозоны (спин=1), глюоны (спин=1), мезоны и мезонные резонансы, а также античастицы всех перечисленные частиц.
Частицы или квазичастицы с полуцелым спином называются фермионами. Для них справедлив принцип Паули и они подчиняются статистике Ферми-Дирака. К фермионам относятся: лептоны (в число которых входят электроны), все барионы (в число которых входят и протоны, и нейтроны) и барионные резонансы, а также соответствующие античастицы. Для всех их спин равен ½.
По времени жизни различают абсолютно стабильные, квазистабильные и резонансные частицы. Последние для краткости называют просто резонансами. Резонансными называют частицы, распадающиеся за счет сильного взаимодействия, с временем жизни 10-23с. Квазистабильные частицы (иногда их называют стабильные), время жизни которых превышает 10-20с, распадаются за счет электромагнитного или слабого взаимодействия. Время 10-20с, ничтожное в обыденных масштабах, считается большим, если его сравнивать с ядерным временем – временем, которое требуется свету на прохождение диаметра ядра (10-15м), 10-23с. Абсолютно стабильными частицами являются, по-видимому, только фотон , электрон е, протон р (в последнее время возникли сомнения в стабильности протона), электронное нейтрино е, мюонное и таонное нейтрино и их античастицы – распад их на опыте не зарегистрирован.