Главная » Все файлы » Просмотр файлов из архивов » Документы » Лекции по физике. Термодинамика

Лекции по физике. Термодинамика

2017-07-09СтудИзба

Описание файла

Файл "Лекции по физике. Термодинамика" внутри архива находится в папке "Лекции по физике. Термодинамика". Документ из архива "Лекции по физике. Термодинамика", который расположен в категории "". Всё это находится в предмете "физика" из 2 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Лекции по физике. Термодинамика"

Текст из документа "Лекции по физике. Термодинамика"

48


Министерство образования РФ

Московская государственная академия

приборостроения и информатики

Беланов А. С.

Физика

Часть III

«Термодинамика»

методическое пособие

Москва, 2003

Молекулярная физика и термодинамика

Молекулярная физика и термодинамика изучают один и тот же круг явлений, а именно макроскопические процессы в телах, т.е. такие явления, которые связаны с колоссальным количеством содержащихся в телах атомов и молекул. Но эти разделы физики, взаимно дополняя друг друга, отличаются различными подходами к изучаемым явлениям.

Последующее изучение молекулярной физики и термодинамики продемонстрирует эти подходы.

Лекция 1,2. Молекулярно-кинетическая теория

1.1. Основные положения молекулярно-кинетической теории

Согласно молекулярно-кинетическим представлениям любое тело состоит из атомов и молекул. Эти частицы находятся в беспорядочном, хаотическом движении, интенсивность которого зависит от температуры тела. Такое движение молекул называют тепловым.

Число атомов и молекул в любом теле огромно. Например, в 1 м3 газа при обычных условиях содержится 1025 молекул, а в жидких и твердых телах 1028 молекул. Если считать, что движение каждого атома или молекулы подчиняется законам классической механики, то практически даже невозможно написать систему дифференциальных уравнений движения такого множества молекул (бумаги на Земле для этого не хватило бы) и решить эту систему. Поэтому поведение отдельной молекулы или атома тела не может быть изучено методами классической механики, тем более, что это поведение (траектория, скорость и другие характеристики движения молекулы) изменяются со временем случайным образом.

Физические свойства макроскопических систем, состоящих из большого числа частиц, изучаются двумя взаимно дополняющими методами: статистическим и термодинамическим.

Статистический метод основан на использовании теории вероятностей и определенных моделей строения изучаемых систем. В совокупном поведении большого числа частиц, координаты и импульсы которых случайны в любой момент времени, проявляются особые статистические закономерности. Например, в газах можно определить средние значения скоростей молекул и их энергий, однозначно связанных с температурой.

Раздел физики, в котором с помощью статистического метода изучаются физические свойства макроскопических систем, называется статистической физикой.

Второй, термодинамический метод исследования поведения большого числа молекул более подробно излагается в 4 и 5 лекциях.

При термодинамическом методе исследования не рассматривается внутреннее строение изучаемых тел, а анализируются условия и количественные соотношения при различных превращениях энергии, происходящих в системе.

Раздел физики, в котором физические свойства макроскопических систем изучаются с помощью термодинамического метода, называется термодинамикой.

Заметим, что статистическая физика и термодинамика при малом числе частиц теряют смысл.

Термодинамика имеет дело с термодинамической системой - совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой).

Состояние системы задается термодинамическими параметрами (параметрами состояния). Обычно в качестве параметров состояния выбирают: - объем V, м3; давление Р, Па, (Р=dFn /dS, где dFn - модуль нормальной силы, действующей на малый участок поверхности тела площадью dS, 1 Па=1 Н/м2); термодинамическую температуру Т, К (Т=273.15 +t). Отметим, что термодинамическая температура прежде именовалась абсолютной температурой.

Понятие температуры, строго говоря, имеет смысл только для равновесных состояний.

Под равновесным состоянием понимают состояние системы, у которой все параметры состояния имеют определенные значения, не изменяющиеся с течением времени.

Пример неравновесного состояния - горячее или холодное тело, внесенное в комнату. Спустя какое-то время температура тела установится постоянной и состояние будет равновесным.

1.2. Уравнение состояния идеального газа

Простейшим объектом, для которого может быть получено уравнение состояния, является идеальный газ.

Идеальным называется газ, молекулы которого имеют пренебрежимо малый собственный объем и не взаимодействуют друг с другом на расстоянии.

Оказывается при нормальных условиях, т.е. давлении Р0=1.013105Па (что эквивалентно 760 мм ртутного столба или одной физической атмосфере) и температуре Т0=273.15 К (t=0 C) многие газы (Н2, О2, N2, воздух и др.) можно считать с хорошим приближением идеальными. В самом деле, учитывая, что эффективные диаметры d молекул различных газов имеют величины порядка 10-10 м и при нормальных условиях концентрация молекул n=N/V 1025 м-3, то среднее расстояние между молекулами <r> 10-8 м, т.е. столь велики по сравнению с d=10-10 м, что силами притяжения можно пренебречь. Суммарный собственный объем всех N 1025 молекул, содержащихся в 1 м3, Nd3/610-5 м3 << 1 м3. Следовательно, собственным объемом молекул газа тоже можно пренебречь.

Таким образом, многие газы можно считать с хорошим приближением идеальными.

Опытным путем было установлено, что при обычных условиях параметры состояния газов подчиняются уравнению Клапейрона

РV/T=B=const. (1)

Оказалось также, что чем разреженнее газ, тем точнее выполняется это уравнение. Идеальный газ строго подчиняется уравнению (1), которое, следовательно, является уравнением состояния идеального газа.

Согласно закону Авогадро, при нормальных условиях, т.е. при температуре t=0 C0=273.15 К) и давлении одна физическая атмосфера0=1.013105Па) объем моля любого газа равен V0=22.4 л/моль=22.410-3 м3/моль.(Напомним, что единицей количества вещества в СИ является моль. Один моль любого газа содержит одно и то же число молекул NA=6.0210 23 моль-1, называемое постоянной Авогадро. Массу моля обозначают буквой М). Если m0 - масса одной молекулы, то масса моля или молярная масса

М=m0NA. (2)

Масса моля вещества, выраженного в граммах, численно равна молекулярной массе этого вещества. Например, для кислорода О2 M=32∙10-3 кг/моль, для азота N2 M=28∙10-3 кг/моль. Подставляя эти значения в (1) и обозначая константу В для одного моля буквой R, находим

R= Р0V0/T0=1.01310522.410-3/273.15=8.31 Дж/мольК. (3)

Константу R называют универсальной газовой постоянной.

Следовательно, уравнение состояния для моля идеального газа имеет вид

РV=RT. (4)

Для произвольной массы m газа можно переписать уравнение (4) в виде

РV=(m/M)RT или РV=RT, (5)

где =m/M - число молей. Очевидно, что

=N/NA, (6)

где N - число молекул, содержащихся в массе газа m.

В такой наиболее общей форме записи уравнение состояния идеального газа (5) называется уравнением Клапейрона-Менделеева.

Употребляется еще одна форма уравнения (5). Введем постоянную Больцмана

k=R/NA. (7)

Тогда из уравнения (5) получим

РV= (N/NA )RT=NkT. (8)

Разделив обе части этого уравнения на объем газа V получим

Р= nkT, (9)

где n=N/V - концентрация молекул, м-3.

Уравнения (1), (5), (8), (9) представляют собой различные формы записи уравнения состояния идеального газа.

Под термодинамическим процессом понимают всякое изменение состояния рассматриваемой системы, характеризующееся изменением ее термодинамических параметров Р,V,T.

Примерами простейших термодинамических процессов могут служить:

  1. Изотермический процесс, при котором температура системы не изменяется (T=const). Для него согласно (5), РV=const.

  2. Изобарический процесс, происходящий при постоянном давлении в системе (Р=const). Для него согласно (5), V1Т.

  3. Изохорический процесс, происходящий при постоянном объеме системы (V=const). Для него согласно (5), P2Т.

  4. Адиабатический процесс, происходящий без теплообмена между системой и внешней средой. Для него, как будет показано в 7.4, , где γ – показатель адиабаты (γ >1).

1.3. Основное уравнение молекулярно-кинетической теории идеального газа

Пусть в сосуде в виде куба со стороной l находится N молекул. Рассмотрим движение одной из молекул. Пусть молекула движется из центра куба в одном из 6 возможных направлений (рис.1) , например параллельно оси Х со скоростью v. Ударяясь о стенку А куба молекула оказывает на него давление (см. рис. 2). Найдем его. Согласно второму закону Ньютона сила давления , где . Предполагая, что происходит абсолютно упругий удар, имеем v1=v2=v. Изменение импульса . Молекула

вернется в исходное состояние ( в центр куба) спустя время dt=(0.5l+0.5l)/v=l/v. В итоге получаем выражение для силы давления, оказываемого на стенку сосуда одной молекулой,

. (10)

Если число молекул в сосуде N, то к cтенке А движется

в среднем N/6 молекул и они создают среднюю силу давления на стенку

, (11)

где <v 2> - cредний квадрат скорости молекул [cм. формулы (17), (18)].

Давление, оказываемое на стенку сосуда, площадь которой S=l2,

(12)

Учитывая, что N/l3=N/V=n, т.е. равно концентрации молекул, а также, что

(13)

-средняя кинетическая энергия поступательного движения молекулы газа, получаем из (12) основное уравнение молекулярно-кинетической теории идеального газа . (14) Такое же давление производят молекулы на другие стенки сосуда, поскольку молекулы газа движутся хаотически и не имеют какого-либо преимущественного направления движения.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее