XVI_Terver (969543), страница 4

Файл №969543 XVI_Terver (Все учебники) 4 страницаXVI_Terver (969543) страница 42015-05-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Пример 1.2. При однократном бросании игральной кости возможен любой из шести элементарных исходов ым..., о®, где ш;, 1 = 1, 6, означает появление 1 очков на верхней грани кости, т.е. 1. СЛУЧАИНЫБ СОБЫТИЯ 24 1.2. События, действия иад ними Введем понятие случайного события. Поскольку в дальнейшем будем рассматривать только случайные события, то, начинал с этого момента, будем называть их, как правило, просто событиями. Определение 1.2. Любой набор элементарных исходов, или, иными словами, произвольное подмножество пространства элементарных исходов, называют событием. Элементарные исходы, которые являются элементами рассматриваемого подмножества (события), называют элеменшарными исходами, благоприлпзсгпвующими данному событпию, или образующими это событпие.

События будем обозначать прописными латинскими буквами, снабжал их при необходимости индексами, например: А, В1, Сз и т.д. Сразу же оговоримся, что определение 1.2 события будет уточнено в следующем параграфе в том случае, когда Й не является счетным множеством. Здесь же мы вводим определение 1.2 по двум причинам. Во-первых, основная цель настоящего параграфа — наглядно показать, как физическое понятие случайного события формализуется в математических понятиях теории множеств, и описать операции над событиями.

Во-вторых, определение 1.2 вполне удовлетворительно можно применять для решения практических задач, в то время как строгое определение события служит лишь для построениятеориивероятностейкак разделасовременнойматематики, оперирующей логически безупречными, но сложными для неподготовленного читателя понятиями. Часто используется следующая терминология: говорят, что событие А произошло (или наступило), если в результате опыта появился какой-либо из элементарных исходов ы Е А. 25 1.2.

События, действия яад вими Замечание 1.1. Во многих учебниках по теории вероятностей (и в данной книге тоже) для удобства изложения материала, особенно при решении задач, термин „событие" как подмножество пространства элементарных событий й отождествляется с термином „событие произошло в результате опыта", или „событие заключается в появлении таких-то элементарных исходов". Так, в примере 1.2, где й = (ы;,з = 1, 61, событием А является подмножество (и1, ыз, шз1.

Но мы будем также говорить, что событие А — это появление любого из элементарных исходов ы;, з = 1,3,5. Пример 1.5. В примере 1.2 было показано, что при однократном бросании игральной кости 1 = Гбу, где м; — элементарный исход, заключающийся в выпадении 1 очков.

Рассмотрим следующие события. "А — выпадение четного числа очков;  — выпадение нечетного числа очков; С вЂ” выпадение числа очков, кратного трем. Очевидно,что А = (ыз, ю4,мз1, В = (ым шз, язв и С = (шз из). Определение 1.3. Событие, состоящее из всех элементарных исходов, т.е. событие, которое обязательно происходит в данном опыте, называют доспзовериым собьзпзиедз. Достоверное событие, как и пространство элементарных исходов, обозначают буквой Й.

Определение 1.4. Событие, не содержащее ни одного эле. ментарного исхода, т.е. событие, которое нвкогда не происходит в данном опыте, называют иевоэ иоисиььи собыпзиеи. Невозможное событие будем обозначать символом Ы. Пример 1.6. При бросании игральной кости достоверное событие можно описать, например, как выпадение хотя бы одного очка, а невозможное — как выпадение 7 очков. ф 1. СЛУЧАЙНЫЕ СОБЫТИЯ Часто бывает полезно наглядно представить события в виде диаераммы Эйлера — Венна.

Изобразим все пространство элементарных исходов прямоугольником (рис. 1.1). При этом каждый элементарный исход ю соответствует точке внутри прямоугольника, а каждое событие А — некоторому подмножеству точек этого прямоугольника. Трактовкой диаграммы Эйлера — Венна может служить опыт с броса- 'Ш вием случайным образом частицы в прямоугольник. Тогда элементарный исход ы— А это попадание частицы в точй ку ы прямоугольника, а событие А — в часть прямоугольника, задаваемую подмножеРие. 1.1 ством А. Рассмотрим теперь операции (дейстпвил) над событпилми, которые, по существу, совпадают с операциями над подмножествами [1].

Эти операции будем иллюстрировать на диаграммах Эйлера — Венна. На рис. 1.2 заштрихованы области, которые соответствуют событиям, являющимся результатами таких операций. Определение 1.5. Пересечением (произведением) двух собьнвий А и В называют событие С, происходящее тогда и только тогда, когда одновременно происходят оба события А и В, т.е. событие, состоящее из тех и только тех элементарных исходов, которые принадлежат и событию А, и событию В (рис. 1.2, а). Пересечение событий А и В записывают следующим образом: С=АПВ, или С=АВ.

Определение 1.й. События А и В называют несовмесшными, или непересенающимисл, если их пересечение является невозможным событием, т.е. если АП В = ю (рис. 1.2, б). 27 1.2. Событяв, действия явя яяня В противном случае собыпию.я называют соемеспвными, или пересекающимися. Рис. 1.2 Определение 1.7. Объединением (суммой) двух событиий А и В называют событие С, происходящее тогда и только тогда, когда происходит хотя бы одно ю событий А или В, т.е. событие С, состоящее иэ тех элементарных исходов, которые принадлежат хотя бы одному ю подмножеств А или В (рис. 1.2, в). 1.

СЛУЧАЙНЫЕ СОБЫТИЯ 28 Объединение событий А и В записывают в виде С=А0В. Если события А и В несовместны, наряду со знаком „О" для их объединения употребляют знак „+". Обычно знак „+" применяют в том случае, если заведомо известно, что А и В несовместны, и это особо хотят подчеркнуть. Например, поскольку невозможное событие И несовместно с любым событием А, то ЯЦА = и+А= А. Аналогично определяют понятия произведения и суммы событий для любого конечного числа событий и даже для бесконечных последовательностей событий.

Так, событие А1Аз...А„... = й А„ в=1 состоит из элементарных исходов, принадлежащих всем собы- тиям А„, п Е 1Ч, а событие А1иАзо...иА„о... = о А„ состоит из элементарных исходов, принадлежащих хотя бы одному иэ событий А„, и Е М. В частности, событпил А1, Аз, ..., А„называют попарно несовместпными (непересекаютаимися), если АА =о для любых т',у =1,п, 1~у, и несовместпными (непересекаютаимисл) в совокупности, если А1Аз...А„= И. Определение 1.8. Разностпью двух событпиб А и В называют событие С, происходящее тогда и только тогда, когда происходит событие А, но не происходит событие В, т.е. 29 1.2. Событии, Лейстиии иад ииии событие С, состоящее из тех элементарных исходов, которые принадлежат А, но не принадлежат В (рис.

1.2, г). Разность событий А и В записывают в виде: С=А~В. Определение 1.9. Дополнением собьипил А (обычно обозначают А) называют событие, происходящее тогда и только тогда, когда не происходит событие А (рис. 1.2, д). Другими словами, А=0~А. Событие А называют также событием проьпиеополож- иым событию А. Если некоторое событие записано в виде нескольких действий над различными событиями, то сначала переходят к дополнениям, а затем умножают и, наконец, складывают и вычитают (слева направо) события. Так, формула С = А1АзВ1 0АзВз ~ Вз эквивалентна формуле С = ( [А1(Аз)В11 0 [Аз (Вз) ~ ) ~ Вз.

Следует отметить, что все действия над событиями можно получить с помощью только двух действий — объединения и дополнения (или пересечения и дополнения). Основанием для этого утверждения служат законы де Моргана, а также соотношение А~В=АВ. Кроме перечисленных выше действий над событиями нам в дальнейшем понадобится понятие включения. Определение 1.10.

Событие А включено в событие В, что записывают А С В, если появление события А обязательно 1. СЛУЧАЙНЫЕ СОБЫТИЯ зр влечет за собой наступление события В (рис. 1.2,е), или каждый элементарный исход ы, принадлежащий А, обязательно принадлежит и событию В. Ясно, что включение А С В эквивалентно равенству АВ = А. Используют и обратное понятие: событие В включает событие А (В ЭА), если А С В. Пример 1.7. Рассмотрим техническое устройство (ТУ), состоящее из т элементов.

Характеристики

Тип файла
DJVU-файл
Размер
2,89 Mb
Материал
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее