Anti-Demidovich (Boyarchuk A.K., Golovach G.P.). Tom 5. Differencial nye uravnenija (2001)(ru)(T)(394s) (940505), страница 41
Текст из файла (страница 41)
10. у" + 2у'+ у = Зе *~/Й + 1, у, = е *, уз — — хе *. 11. у'~+у =них, Л, г —— (1 же), Лзн —— — (1жт). 12. у'в — 8ту = соа2х. Построить общее решение однородных и неоднородных уравнений, используя формулу Остроградского — ![иувилля. 13. ум + хул — 2ху'+ 2у = О. 14. ум + хаул — 4ху'+ бу = а + 1, уг = хз, ут — — х' — 1. 15. у" + у [Л х — 2у = зЛ х. 16. ум — -'х у" + ау' — у = х + х, уг = х, уз = х .
Методом Эйлера построить общие решения следующих равнений: 17. у — 10уи+9у' = О. 18. у + 8ум+1бу' = О. 19. у' — у = О. 20. у" — буге+ 9у"'= О. Методом неопределенных коэффициентов построить часппае решения следующих уравнений: 21. уе — у = 2е* — хз. 22 ув — Зу" +2у = хсозх. 23. у" +у=бас*. 24.
у" +у =хвшх. $5. Краевые задача Решить уравнения Эйлера: 25. х у" +ау'+ 49 = 10х. 26. хада — Зху'+ 4у = 11хг. 27. (2х — 1)у" — 3(2х — 1)у'+ у = х. 28. (2х+ 3)у'"+ 3(2х+ 3)у' — Зу = х. 181 Построить решения следующих краевых зааач: 29. у" — у' = О, у(0) = -1, у'(1) — у(1) = 2, 0 < х < 1. 30.
у" +у = -х созе, 2у(0)- у (0)+у(!)+Зу'(1) = -1, -у(0)+ 4у'(0)-2у(1)+5у'(1) = О, 0 < х < 1. 31. у" — 2у'+у =е *, у(О)+у'(2) =О, у'(0)+Зу(2) =1, 0 < а <2. 32. у'~+у = хг, у'(О) + у'(гг) = 2, у"(О) — Зу(гг) = 3, у"'(О) — 5у'(гг) = 1, у(0) = О, 0 < х < гг. Построить решения задач: 33. у" — у = 1, у(0) = О, (у! <+сопри х +ос.
34. у" — 2гу =О, у(0) = — 1, у(+со) = О. 35. х у" — бр = О, у(1) = 2, (у(0)! <+ос. Зб. хгу" — 2ху'+ 2у = О, у(1) = 3, у = о(х) при х -го. 37. (1 — х~)уг — 2ху'+ 2у = 2хипх+(1+х )соах, х Е (-1, !), (у! <+ос, /у') <+со, у'(0) = 1. Найти собственные числа и собственные функции задач: 38. у' + 2Лхя = О, у(0) — у(1) = О.
39. у' + ЗЛх'у = О, 2у(0) + Зу(2) = О. 40. у'+ 6Лх у = О, у(0) + бу(3) = О. 41. у" + ЗЛу'+ 2Лгу = 0 у(0) = О, у(!) = О. бг. у" +лу=о, у(о)+гу(а)-уП) =о, у(П+зу(о)+4у(и=о. 43. у"' -ь Лу = О, у(О) = О, у'(1) = О, у'(О) + Зу(1) = О. 44. у" + х 'у' + Лу = О, 0 < х < 1, у(1) = О, !у! < +гю, (у'! < +ос. 45. (1 — х )у" — 2ху' + Лу = О, -1 < х < 1, !у! < +со, (у'! < + со.
46. х у" + Лу = О, 0 < х < 1, у(1) = О, у(+0) = О. Следующие уравнения свести к самосопряженному виду: 47. х~р" +ау' — х~у+ Лху = О. 48. у" + (х+ 1)у' — хгу+ Лх у = О. 49. (х .1- !)у" — (а:+ 2)у' — агу+ Л(х+ 5)у = О. Построить особые кривые и особые решения уравнений; 50. у — уг = О. 51. у — 4уг = О. 52. уу" +х — 1 = О. 53. ху"' — у" = О. Решить следующие дифференциальные задачи: 54. сову' = 1, у(0) = О, у'(О) = 1, у"(О) = гх. 55.
у" (у" — !) = О, у(О) = О, у'(О) = 1, у"(О) = О. 56. (у" - г)(у" - 3) = О, у(а) = О, у'(О) = 5, у"(О) = З. Понизить порядок следующих уравнений: 57. бу" — 5у" у'~ = О. 58. ху'~ + уи = е*. 59. у"'у' — у' = О. 60. ху"' — у" (1 — х) = О. ,з 61. уу" — у — у' = О. 62. уу" + у = !. 63. у'уи — у' — у' у" = О. 64, у"'у' — у' = О. Проинтегрировать следующие уравнения: 65. уи +Зуи+2 = О. 66. З(х'у™)'+х'у" — 4= 0. 67.
у" 1пхз!п(у" 1пх)+(у" 1пх) — 2 = О. 68. (ху"' — 1)(ху"' — 5) = О. 69. х~ — у' — 1 = О. 70. тих — у"' — 1 = О. 71. у"' — у' — 1 = О. 72. у" = е" . 73. 2у'у" — у" + 1 = О. 74. е" — у" = О. 75. у' — у~ — 1 = О. 76. у = ху' — у' . 77. у = 2ху' — !пу'. 78. х = ~Р+(Пу'. 79. а =у'Л/1+у' . Глава 3 Системы дифференциальных уравнений $1. Линейные системы А = (ай(С)), уравнения (1), (2) мозсно представить в векторной форме йх — тАХ+У, дС дх — = Ах.
йС (2') Матрица хц(С) хо(С) ... «ы(С) хгг(С) хп(С) ... хъ(С) Ха!(С) Ха2(С) ° ° Хаа(С) ГДЕ ХЦ вЂ” КООРДИНатЫ Лиисйиа НЕзаВНСИМЫЛ РЕШЕНИЙ (ВЕКТОРОВ) Хг = (ХЦ, Х „..., Ха,), Хг = = (хо, хп, ", ха) ..., Уа = (хм, хга,...,Хаа) вектоРного уравнения (2'), называется интесрольиой, нли фупдамеятолълой матрицей этого уравнения. Иногла ее называют матрицей мроиского. Определнгель хц(С) хи(С) ... х,а(С) «гг(С) хп(С) ... «га(С) хы(С) х 2(С) х (С) ИС(С) = (4) 1.1. Неедвородваи евстемв линейных двцгферевввлдьвых уравнений С ИЕРЕМЕВВЬВИВ ИОЗСР2РИЦВЕВГЯМИ. Фундаментальная матрица уравнении. Определитель Вронского.
Система уравнений вида дхг — = ~а;2(С)«2+уз(С), С =1, и, (1) ов гю у называется иеодиородпой системой лилейиыл диффереиииольных уравнений с переменными коэффициентами ац(с). Будем считать, что коэффициенты и свободные члены 22(с) являются непрерывными функциями на (а, Ь). Система дифференциальных уравнений йхг — = 2 аб(С)х;, 2 = 1, а, (2) называется одиородпой. Вводя в рассмотрение векторы х = («2(С)2 «2(С), ", Ха(С)) ~ ~ — (~2(С)1 ~2(С) "- ~ ~ (С)) 183 состав!сивый из частных решений системы (2), называется онрвделитвлвм Вронского.
Лля того чтобы матрица вида (3), где хб«) — частные решения системы уравнений (2), была инте!ральной, необходиью и ЛОСтаточно, ЧтОбы де! Х«) = Иг«) зь 0 при 1 б (о, Ь). При этом общее решение векторного уравнения (2') представляется в ище х«) = Х«)С, (5) где С вЂ” произвольный постоянный вектор. Общее же решение уравнения (1') будет х«) = Х«)С+ х«), (6) где Е«) — какой-нибудь вектор, являющийся частным решением уравнешт (1 ). 1.2. Метод вариации произвольного вектори.
Если известна интегральная матрица уравнения (2'), то частное решение х«) уравнения (1') можно найти, пользуясь методом вариации лрензввльнаге вектора С. Этот вектор удовлетворяет уравнению Х«)С «) = 1 «). Поскольку бегХ«) = йг«) Ф О, то 3(Х«)) ' и С!«) = Х«) !у«), откуда С«) = /Х«) 'У«)д(+С„ где Св — произвольный постоянный вектор. Подставляя (8) в (5), имеем х«) = Х«)Се+ Х(1) ~Х«) 'У(с)!й. Сравнивая (6) и (9), получаем (8) (9) х«) = Х«) '( Х«) 1«) дт.
( ! .в)= '(1н,!!,). (10) где под ехр(В) понимаетсн матричный ряд: 1 1 ехр(В) = Е+ В+ — Вз+ ... + — В" + 2! «! Если матрицант известен, то решение начальной задачи дх — = 1«)х+ У«)! х(ее) = хв, Ж находится с помощью формулы Коши: *«) = Х«);+ ~Е«>~- (т)У(т)д, (12) 1.3. Митрицвит.
Фу!и«ментальная матрица У уравнения (2'), удовлетворяющая начальному условию У«в) = = Е, а < гв < Ь, Š— единичная матрица, называется матрицантвм. В общем случае матрнцант находится нз уравнения (2') методом лесмдевательньи нриблихгвннй: Х„в,«) = Е+~А(г)Х„(г)дг, Хны О, « =О, 1, 2, ..., (в, 1 б (а, Ь), 3! = Еш Х„«). Ф! Случай Лааво — Давилевсыго. Если справедливо тожлеспю А«) ~ А(г) дг = ~ А(г) дг А«), гв, 1 б (а, Ь), !! !! то матрицаит можно найти по формуле Гл. 3.
Системы ли!Кереишшльиык урааиевнй 1.4. Неоднородные линейные свстемы с иостоиввымв козффащвеатамв. Ме од Эйлере, Если ал, — — сола!, то система (1) называется линейной неоднородной с настениными коэффициентами. Общее решение системы (2) можно найти, пользуясь методом Эйлера, который заключается в следующем. Ищем решение уравнения (2') в виде ь, Ьз где В =, — постоянный вектор, Л вЂ” посгоянная.
Ь„ а = Вел!, Тогда из (2') получаем уравнение Р(Л)В = О, где Р(Л) = А — ЛЕ. Поскольку мы ищем нетриви- альное решение, то (14) Применяя метод исключения, решить следующие системы дифференциальных уравнений: 409. х = 2х+ у, у = Зх+ 4у. Ч Разрешив первое уравнение относительно у и подставив во второе уравнение системы, получаем у = й — 2х, (й — 2х)' = Зх+ 4(й — 2х), й — бе+ 5х =О. Корни характеристического уравнения Лл -6Л+ 5 = О суть Л, = 1, Лз = 5. Следовательно, общее решение последнего уравнения будет х = С!е + Сте .
! М Подставив значение х в первое уравнение системы, найдем у= (С!е +Сзе ) — 2(Сле +Сзе ) =-С,е +ЗСте . Зч 410. х+ у = !!+ бе+ 1, у — х = -3(л+ 31+ 1. Ч Полсгаюшя значение у = !т + 6Ь+ 1 — й, найденное из первого уравнения системы, во впиюе уравнение, имеем й + а = 31~ — 1+ 5. (1) де! Р(Л) = О. Это характеристическое уравнение. Пусть Л„Л„., ˄— его простые корни. Тогда соответствующие им решения будут л,! л,! л„! х,=Ве', хл=Ве',.,х„=Ве". Велюры Вл, й = 1, и, являются решениями уравнений Р(Лл)Вл = О.
Произвольная линейная комбинация векторов (! 3) ч х =,) С;В;ел", (15) 1=1 где С; — постоянные, есть общее решение уравнения (2'). Далее, если среди корней характеристического уравнения имеется корень Л, кратности г > 2, то соответствующее ему вектор-решение имеет вид л л 1 х, = (Е+Р(Л,)!+ — Р (Л,)! + ... + Р" '(Л,)!" '~! А,е"", 2! ' ''' (т — !)! (16) где А, — вектор, удовлетворяющий уравнению Р'(Л,)А, = О. (!7) В этом случае произвольная линейная комбинация векторов вида (!3) и (16) составляет общее решение уравнения (2').