Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (940504), страница 50
Текст из файла (страница 50)
Теорема 5(о линейности равномерного предела). Если /„=1 /, д„д, Я = Рг —— Рд = РГ = Р ып Е Г(, то )гл Е С У ф Лд:Г / + Лд. М Имеем при и со: !!(/„+ лд„) — (/ ф лд)!! < !!/„— /!!+ !л! !!д„- д!! - о, следовательно, /„-1- лд„ч У + лд. и Не все теоремы о пределах сходящихся числовых и равномерно схолящихся функциональных последовательностей аналогичны друг другу. Это объясняется тем, что равномерная норма, в отличие от модуля числа, может принимать значение +ос. Приведем пример двух равномерно сходящихся последова1ельносгей функций, произведение которых сходится неравномерно. Пусть 1г(я Е Р( я Е С) /„(г) = г, /(г) = г, д„(г) = — „'.
Тогда /„~ /, д„О. Однако, ч(п Е Н,г Е С) (/„д„)(г) = -*, !!/ д„— О!! = !!/„д„!! = зир (-„' ~ = +со, т.е. сходимость -"ес неравномерная. Определение 3. Пусть /„: С С и )Ги Е Гь( РГ„ — — Я. Последователыгость (/ ) называетсв РавномеРно фУндаментальной, если (згг > 0) (Зп, Е Гч) (ч(п >я п~р Е Гч0): |!У чг У !! < г. Числовую последовательность можно рассматривать как частный случай последовательности постоянных фуггкций, прн этом понятия фундаментальности и равномерной фундаментальности совпадают. Теорема 6(критерий Коши). Последовательность (/„) равномерно сходится тогда и только тогда, когда она равномерно фундаментальна.
м необходимость. пусть /„=г / н г > О. пользуясь определением равномерной сходимости, найдем такой номер и, Е 1Ч, что чп > и, !!/„— /!! < -'. Тогда ч(п > п„р Е Ы) !!/„,,р — /!! < -'. Следовательно, У(п > н„Р Е ГЦ) !!/„др / !! ( !!/ чр /!!+ !!/ / !! < ь, 'гто означает равномерную фундаментальность последовательности (/„).
Достаточность. Пусть последовательность (/„) равномерно фундаментальная и я Е Я. Тогда из оценки !У. -,(я) — У. (гН < (!/.+. — У )!, (3) справедливой ч(п Е Гч, р Е Гц), следует фундаментальность числовой последовательности (/„(г)). Согласно критерию Коши, для последовательности комплексных чисел существует 1пп /„(г), который обозначим через /(г).
Г!устъ г > О. Поскольку последовательность (/„) равномерно фундаменталъная, то существует такое и, Е Гч(, что У(п > п„р Е ГГ) выполняется неравенство !!/„чг — /„!! < е, В силу неравенства (3) Й(п > н„р Е Гч(, г Е Я) имеем !У ьд(г) — У (г)! ( г. перейдем в этом неравенстве к пределу при р — оо. получим зг(п ) п„я е Я) неравенство !/(г) — /„(я)! ( е. Согласно определению точной верхней грани, чн ) н, ))/ — /„)! ( е, откуда следует, что /„--и У на Я. и Овределеиив 4. Пусть /„: С ' С, Ры = Я чп Е 1Ч, Ряд Я /„ называется равномерно сходят имея, если лоследовательность его частичных сумм сходится равномерно. Сумму равномерно сходящегося ряда назовем равномерной суммой.
б 1. Ряд Тейлора 201 Оиредемние 5. Пусть у„: С вЂ” С, РÄ—т а !Гп Е Гй). Ряд ~ у удовлетворяет равномерному условию Коши, если наследавательнасть его частичных сумм является равномерно фундамгнниыьнай. Критерий Коши, доказанный для равномерно фундаментальной последовательности, сформулируем в терминах теории функциональных рялов. Теорема 7 (критерий Коши для функционального ряда). Пусть У„: С - С, РÄ— — Я згп б Г!Г. Ряд ,'г У„сходится равномерно тогда и только тогда, когда он удовлетворяет равномерному условию Коши, 1.4. Нормальная сходимость функционального ряда.
Признаки Вейерштрасса, Абеля и Днрнхле равномерной сходнмостн функциональных рядов. Определение 1. Пусть У„: С вЂ” р С, РЫ = Я чп Е Г!Г. Ряд д,'У называется нормально сходящимся, если сходится ряд ) (!У„(!. Если все члены ряда ~, У„постоянны, то его нормальная сходимость равносильна абсолютной сходимости числового ряда. Теорема Л Пусть У„: С вЂ” ! С, Рг — 2 чп 6 Х Еши ряд ~ У„гхадшися нормальна, то ан является равномерно сходящимся, щ Из сходимости числового ряда ~ (!У„)! следует, что он удовлетворяет критерию Коши: чр (хгг > 0) (дп, Е РО (й!(и ) п„р Е )йО): д, )!Уй!! < г.
й= р! Из неравенства йр рр Уй <,) !!Уй !! й= ! й= -! выполняющегося !г(п б Г(, р Е р(), и теоремы 7, п.!лл следует равномерная сходимость ря- да~ У„.м Следствие (мажорантный признак Вейерштрасса равномерной сходимости функционального ряда). Пусть У„: С -! С, Ры = Я чп Е ГГ. Еии существует такой сходящийся числовой ряд ~ и„, чта 'чп б РГ !!У„(! < а„, то ряд ~ У„сходится равномерно. В качестве примера исследуем на равномерную схоцимость ряд ~ У„, где У„(х) = Г.-„-т-т, 0<» < -роз.
Поскольку У„(0) = 0 и 1цп У„(х) = О, то функция У„имеет чп б М локальный максимум, 2 являющийся одновременно ее равномерной нормой. Решая уравнение У„'(х) =;,' лытгр = О, получаем-' х = -т, !!У !! = У (х„) =,!,. Так как числовой рлд,) — !-г сходится, то по теореме 1 ряд ~, У„сходится равномерно. Если взять а„= -!г, то !!У„!! < а„и ряд д, У„равномерно сходится по мажорантному признаку Вейерштрасса. Пусть Уй . С С (Ь = 1, и), дй '. С С (й = О, г!), Ргй — — Р й = В. Тогда и» Е Я справедливо тождество Абеля — ! Уй(»)(гдй(») — дй-!(»)) = У.(»)д (») — У!(»)дч(») — ~~' 1»Уй+!(») — Уй(»))дй(») (1) й=! й=! Действительно, Я ,Уй(д - дй- ) = Уй(д — дч) + Уз(дз - д!) + " + У.(д.
- д. ) = й=! У!дч + (Л вЂ” Уз)д! + " + (У.-! — Ур)д.- + У.д. = У-д. — Угдч ~л~ (Уйч! Уй)дй й=! тожаество (1) я~ляется источником получения признаков равномерной сходнмости функциональных рядов. 202 Гл. 5. Ряды апалвтических функций. Изолированные особые точки Теорема 2 (о равномерной равносходимости функциональных рядов, связанных преобразованием Абеля). Пусть посзедовательиость функций (7„д„) сходится равномерно на мнозкестве Я. Тогда функциональные ряды, сходящиеся поточечно на мнозкестве Я, Т (д — д -!), де=0, (2) д(У ! — У) сходятся равномерно или неравномерно одновременно. м Пусть ряд (3) равномерно сходится на множестве Я.
Согласно теореме о линейности равномерного предела и тождеству Абеля ~~', Уй(дй — дь-!) = У д — ) дй(Ьь! Уй) уп б р( (4) й=! й=! ряд (2) сходится равномерно на множестве Я. Аналогично ряд (3) равномерно сходится, если ряд (2) является равномерно сходящимся. ° Определение 2. Последовательность комплексных чисел (х„) называется бимонотониой, если й«(п б М! р б Р)) (3) «.е «р (6) ) !хин! — х«„.! < 2 ) (хйь, — хй) .
(5) й= и! й= ь! Смысл термина "бимонотонность" поясняет следующее утверждение. Лемма. Пусть «Уп б Р( х = х„+ ьу . Если последовательности (х„), (у„) монотонны, то последовательность (л„) является бимонотониой. М Имеем «у(п б р(, р б р)) .!. р «р !хйн! — хй! < ~~! !хй, — хй!+ ~~! !уйь! — уй! = й= ы й= н! й= ь! «р «я «р (хйь! — хй) + ~ь (уйы — уй) < 2 ~~! (хй ! — зй) . и й= «! й= «-! й= Теорема 3. Если йх б Я последовательность комплексных чисел (3„(з)) бимонотоннан и зир !!дй!! 5пр !!Тй — 7„!! = О(1), й> / й,й> то ряд 2 д„((„ь! — У„) сходится равномерно. а Пусть х б Я.
Тогда «р «-г «р дй(х)((й~«(з) — Уй(х)) < ~ !дй(х)! !(йн«(з) — )й(з)! < я«р !!дй!!2 ~ (~йь«(з) — (й(х)) < й= -«! й — ! й> й= < 2 зпр !!дй!! ) У„.,р„.«(з) — („(з)! < 2 звр /!дй/! зпр !!Уй — („!!. (7) й> й> й> Из оценки (7) и критерия Коши для функционального ряда следует утверждение теоремы. М Теорема 4 (Абеля). Пусть «Ух б Я последовательность комплексных чисел (7„(х)) бимоиотонная. Если ряд 2 Зз„сходится равномерно и !!У„!! = О(!), то ряд 2 („«р„является равномерно сходящимся. щ Пусть Ф = 2,' (о„.
Полагаем д„= Г )зй — Ф Чп б р(. По условию !!д„!! = о(1), Поскольку =! й=! зир !!дй!! звр !!зй — У )! = о(1)0(1) = о(1) и нп > 2 Зз„= д — д «, то выполнены все условия й> й> теоремы 3. Поэтому рад 2., д (7 ы — Т„) равномерно сходится. Так как !! у„д„!! < !!у„!!)!д„)! = 0(1)о(1) = о(1), то по теореме 2 ряд 2; у„пз„равномерно сходится, в 203 й 1. Риа Тейлора Теорема б (Д и рихл е) . Пусть Ь)л б Я последовательность комплексных чисел ()„(г)) биманатанная Если ! р, =0(П и ((У„;(=а(Рц ь=ь (8) / ю I Оиределеиие 3.
Ряд ~ 2,' уь ! называется п-огтаткам ряда 2,г„= ~ ~ гь) гон он Если ряд 2 у„сходится равномерно, то, очевидно, его п-остаток равномерно сходится к нулю. 1.5. Функциональные своиства равномерной суммы функционального ряда. Теорема 1. Если функцианальныи ряд 2,')„сгодится равномерно в области 0 С С и всв его члены являются непрерывными функциями в точке го б О, та его сумма Я будет непрерывной функцией в этой тачке. < Пусть в > О. В силу равномерной сходимости ряда ~„у„найдется такое п, б Н, что Уп>п, ((б-б„()= '~~ Уь (-'.