Диссертация (786272), страница 21
Текст из файла (страница 21)
— 1980. — V. 28. —№ 4. — P. 889—902.125. Louveaux F.V. Multistage Stochastic Programs with Block-separable Recourse // StochasticProgramming 84 Part II, Mathematical Programming Studies. — 1986. — V. 28. — P. 48—62.126. Luedtke J., Ahmed S., Nemhauser G.L.
An Integer Programming Approach for LinearPrograms with Probabilistic Constraints // Mathematical Programming. — 2010. — V. 122. –№ 2. — P. 247—272.127. Madansky A. Dual Variables in Two-Stage Linear Programming under Uncertainty //Journal of Mathematical Analysis and Applications.
— 1963. — V. 6. — № 1. — P. 98—108.128. Madansky A. Methods of Solution of Linear Programs under Uncertainty // OperationsResearch. — 1962. — V. 10. — № 4. — P. 463—471.129. Marti K. Stochastic Optimization Methods. — Berlin, Heidelberg: Springer, 2005. — 314 p.130. Milder J.L., Wollmer R.D. Stochastic Programming Models for Scheduling AirliftOperations // Naval Research Logistics Quarterly. — 1969.
— V. 16. — № 3. — P. 315—330.115131. Miller B.L., Wagner H.M. Chance Constrained Programming with Joint Constraints //Operations Research. — 1965. — V. 13. — № 6. — P. 930—945.132. Nemirovski A., Shapiro A. Scenario approximation of chance constraints. // Probabilisticand Randomized Methods for Design Under Uncertainty.
G. Calafiore and F. Dabbene(Eds.). London: Springer, 2005. — P. 3—48.133. Nemirovski A., Shapiro A. Convex Approximations of Chance Constrained Programs //SIAM Journal on Optimization. —2006. — № 17. — P. 969––996.134. Norkin V. Global Optimization of Probabilities by the Stochastic Branch and BoundMethod // Lecture Notes in Economics and Mathematical Systems. Stochastic Programmingand Technical Applications. K. Marti and P. Kall (Eds.). Berlin: Springer-Verlag, 1988.
—P. 186—201.135. Norkin V. On Mixed Integer Reformulations of Monotonic Probabilistic ProgrammingProblems with Discrete Distributions [Электронный ресурс] // Режим доступа: http://www.optimization-online.org/DB_HTML/2010/05/2619.html. 2010.136. Olsen P. When is a Multistage Stochastic Programming Problem Well-Defined //SIAM J. Control and Optimization. — 1976.
— № 14. — P. 518—527.137. Parpas P., Ustin B., Webster M., Tran Q.K. Importance Sampling in StochasticProgramming: A Markov Chain Monte Carlo Approach [Электронный ресурс] // Режимдоступа: http://www.doc.ic.ac.uk/ pp500/pubs/mcmcImpSampling.pdf 2013138. Prékopa A. Stochastic programming. — Boston: Kluwer Scientific, 1995. — 624 p.139. Prékopa A. Probabilistic programming // Stochastic Programming, Handbooks inOperations Research and Management Science (A Ruszczyński and A. Shapiro, editors).New Work: Elsevier, 2003. — V. 10.
— P. 267—351.140. Prékopa A. Numerical Solution of Probabilistic Constrained Programming Problems //Numerical Techniques for Stochastic Optimization (Yu. Ermoliev and R.J-B. Wets, editors).Springer-Verlag, Berlin, 1980. — P. 123—139.141. Rockafellar R.T., Wets R.J.-B. Stochastic Convex Programming: Basic Duality // PacificJournal of Mathematics. — 1976.
— V. 62. — P. 173—195.116142. Rockafellar R.T., Wets R.J.-B. Stochastic Convex Programming: Singular Multipliers andExtended Duality Singular Multipliers and Duality // Pacific Journal of Mathematics. —1976. — V. 62. — № 2. — P. 507—522.143.
Rockafellar R.T., Wets R.J.-B. Continuous Versus Measurable Recourse in N-StageStochastic Programming // Journal of Mathematical Analysis and Applications. — 1974. —V. 48. — № 3. — P. 836—859.144. Rockafellar R.T., Wets R.J.-B. Measures as Lagrange Multipliers in Multistage StochasticProgramming // Journal of Mathematical Analysis and Applications.
— 1977. — V. 60. —№ 2. — P. 301—313.145. R¨mich W., Schultz R. Multistage Stochastic Integer Programs: An Introduction // OnlineOptimization of Large Scale Systems. Gr¨tschel M., Krumke S.O., Rambau J. (eds.). Berlin:Springer. —2001. — P.581—600.146. Ruszczyński A. Parallel Decomposition of Multistage Stochastic Programming Problems //Mathematical Programming. — 1993.
— V. 58. — № 1—3. — P. 201—228.147. Ruszczyński A. Probabilistic Programming with Discrete Distributions and PrecedenceConstrained Knapsack Polyhedra // Mathematical Programming. — 2002. — V. 93. — № 2. —P. 195—215.148. Ruszczyński A., Shapiro A. Stochastic programming (Handbooks in Operations Researchand Management Science). –– Amsterdam: Elsevier. — 2003.149. Schweitzer E., Avriel M.
A Gaussian Upper Bound for Gaussian Multi-Stage StochasticLinear Programs // Mathematical Programming. — 1997. — V. 77. — № 3. — P. 1—21.150. Sen S. Subgradient Decomposition and Differentiability of the Recourse Function of a TwoStage Stochastic Linear Program // Operations Research Letters. — 1993. — V. 13. — № 3.
—P. 143—148.151. Sen S. Relaxations for Probabilistically Constrained Programs with Discrete RandomVariables // System Modelling and Optimization. Lecture Notes in Control and InformationSciences. — 1992. — V. 180. — P. 598—607.117152. SenguptaJ.K.DistributionProblemsinStochasticandChance-ConstrainedProgramming // Economic Models, Estimation and Risk Programming (Essays inHonor of G. Tintner).
— 1969. — V. 15. — P. 391-424.153. Shapiro A. Inference of Statistical Bounds for Multistage Stochastic ProgrammingProblems // Mathematical Methods of Operations Research. — 2003. — V. 58. — № 1. —P. 57—68.154. Shapiro A. Complexity of Two and Multi-Stage Stochastic Programming problems[Электронныйресурс]//Conferencetransparencies,2005.Режимдоступа:http://www2.isye.gatech.edu/people/faculty/Alexander_Shapiro/publications/Comp05.pdf155.
Shapiro A., Dentcheva D., Ruszczyński A. Lectures on Stochastic Programming: Modelingand Theory. — Philadelphia: SIAM, 2009. — 436 p.156. Shapiro A., Nemirovski A. On Complexity of Stochastic Programming Problems //Continuous Optimization. Applied Optimization. — 2005. — V. 99. — P. 111—146.157. Stackelberg H.F. Marktform und Gleichgewicht. — Berlin: Springer-Verlag, 1934. — 138 p.158.
Swamy C., Shmoys D.B. Sampling-based Approximation Algorithms for Multi-stageStochastic Optimization // SIAM Journal on Computing. — 2012. — V. 41. — № 4. —P. 975––1004.159. Symonds G.H. Deterministic Solutions for a Class of Chance-Constrained ProgrammingProblems // Operations Research.
— 1967. — V. 15. — № 3. — P. 495—512.160. Uryas’ev S. Differentiability of the Integral over a Set Defined by Inclusion // Cybernetics. —1988. — V. 24. — № 5. — P. 638—642.161. Uryas’ev S. Differentiation Formula for Integrals over Sets Given by Inclusion // NumericalFunctional Analysis and Optimization. — 1989. — V.
10. — № 7,8. — P. 827—841.162. VajdaS.ProbabilisticProgramming(ProbabilityandMathematicalStatisticsMonograph). — New York, London: Acad. Press, 1972. — 127 p.163. Wallace S.W., Yan T. Bounding Multi-Stage Stochastic Programs from Above //Mathematical Programming. — 1993. — V. 61. — № 1–3. — P. 111—129.118164. Wallace S.W., Ziemba W.T. Applications of Stochastic Programming. — SIAM,Philadelphia, 2005. — 704 p.165.
Wessels J. Stochastic Programming // Statistica Neerlandica. — 1967. — V. 21. — № 1. —P. 39—53.166. Wets R. Programming under Uncertainty: The Equivalent Convex Program // SIAM Journalon Applied Mathematics. — 1966. — V. 14. — № 1. — P. 89—105.167. Wets R.J.-B. Programming under Uncertainty: The Solution Set // SIAM Journal onApplied Mathematics. — 1966. — V. 14. — № 5. — P. 1143—1151.168. Wets R. Duality Relations in Stochastic Programming // Symposia Mathematica, XIX(Convegno sulla Programmazione Matematica e sue Applicazioni), INDAM, Rome.
—Academic Press, London. — 1976. — P. 341—355.169. Zhao G. A Lagrangian Dual Method with Self-Concordant Barriers for Multi-StageStochastic Convex Nonlinear Programming // Mathematical Programming. — 2005. —V. 102. — № 1. — P. 1—24..