149951 (732487), страница 3
Текст из файла (страница 3)
Уравнение Тэйда устанавливает зависимость плотности только от давления. Это означает, что оно описывает баротропный процесс.
Тема 3
Кинематика течений жидкости
1. Два подхода к описанию движения сплошной среды.
Переменные Эйлера и Лагранжа.
2. Траектория. Линия (поверхность) тока.
3. Кинематика вихрей. Циркуляция скорости.
Кинематикой называется раздел механики, изучающий движение материальных тел в пространстве с геометрической точки зрения без выяснения причин его возникновения. Все кинематические величины, характеризующие движение твёрдого тела и движение отдельных точек (расстояния, скорости, ускорения и т.д.), рассматриваются как функции времени.
1. Два подхода к описанию движения сплошной среды.
Переменные Эйлера и Лагранжа
Для описания движения сплошной среды возможны два подхода. Один из них называется лагранжевым, другой - эйлеровым.
Лагранжев метод описания движения относится к типу отсчётных. В некоторый (начальный) момент времени ... каждая из жидких частиц маркируется путём присвоения ей значения координат в данный момент времени.
В трёхмерном пространстве введём обозначения
...
В дальнейшем прослеживается движение каждой частицы индивидуально. При таком подходе положение частицы в каждый момент времени
... будет зависеть от параметров а,б,с и ..., которые назы-
ваются переменными Лагранжа. Можно записать, что вектор положения
жидкой частицы равен
...
Скорость жидкой частицы выразится через производную радиус-вектора
...
а ускорение через производную скорости
...
В последних двух формулах при дифференцировании параметры а,б,с являются постоянными, ... и ... являются только функционалами времени и в этом случае энергии дифференцирования ... и ... тождественны.
Эйлеров метод описания движения относится к типу пространственных. В каждой точке пространства с координатами ... изучаются параметры движения в различные моменты времени ... . Таким образом, скорость жидкости в различных точках пространства должна быть функцией четырёх переменных ... , называемых переменными Эйлера,
...
а её дифференциал
...
В движущейся среде приращения ... не ...
независимыми, а соответственно равны
...
Поэтому справедливо равенство
...
где
...
Это означает, что полное ускорение ... индивидуальной жидкой частицы, находящейся в момент времени ... в точке пространства
с координатами ... , состоит из двух частей: локального ускоре-
ния ... , обусловленного изменением скорости во времени в данной
точке, и конвективного ускорения ... , обусловленного неоднородностью поля скоростей в окрестности данной точки и связанного с этим обстоятельством конвективного переноса.
Производная ... носит название индивидуальной или субстанциональной производной.
Если ... , поле скоростей стационарно, однако это ещё
не означает, что в жидкости отсутствуют ускорения. Стационарность
или нестационарность поля скоростей зависит от выбора системы координат.
Если ... = 0, поле скоростей однородно.
2. Траектория. Линия (поверхность) тока
Траекторией жидкой частицы называется геометрическое место точек пространства, через которое частица последовательно проходит во времени.
В переменных Лагранжа траекторию определяет уравнение
...
Если задача решена в переменных Эйлера, то известно поле скоростей ... и траекторию следует находить путём решения дифференциального уравнения
...
с начальным условием: при ... .
Линией тока называется линия, в каждой точке которой в каждый момент времени скорость направлена по касательной к этой линии.
В векторной форме условие тангенциальности можно записать в виде
...
В проекциях на оси координат получим систему уравнений
...
которую можно переписать также в виде
...
Время здесь является фиксированным параметром.
В стационарном случае траектория и линия тока совпадают. В нестационарных течениях траектории отличаются от линий тока.
Поверхность тока определяется как поверхность, в каждой точке которой в фиксированный момент времени вектор скорости лежит в касательной плоскости. Такую поверхность можно образовать, например, путём проведения через замкнутую кривую непрерывной совокупности линий тока. В этом случае говорят о трубке тока.
2. Кинематика вихрей
Рассмотрим вектор вихря скорости, который определяется соотношением
...
называемый иногда вектором завихренности.
Линии в потоке жидкости, в каждой точке которой вектор вихря скорости является касательным к данной линии, называются вихревыми линиями.
...
...
Обобщение данного понятия на поверхность (вектор вихря в каждой точке поверхности должен лежать в касательной плоскости) даёт понятие вихревой поверхности или вихревого слоя.
Совокупность вихревых линий,проведенных через замкнутый контур, образует вихревую поверхность, а жидкость, заключённая внутри вихревой поверхности, - вихревую трубку.
Интенсивность вихревой трубки удобнее выразить через циркуляцию вектора скорости Г.
В общем случае Г определяется как
...
где ... - вектор перемещения вдоль произвольного контура, соединяющего точки А и Б.
Если контур замкнут, то
...
Тема 4
Система уравнений гидростатики.
Динамика течений невязкой (идеальной) жидкости
1. Уравнение неразрывности.
2. Уравнение Эйлера.
3. Уравнение адиабатического движения жидкости.
4. Уравнения Эйлера в форме Громеки.
5. Гидростатика.
6. Уравнение Бернулли.
Система уравнений, описывающих течение жидкостей и газов, основывается на фундаментальных законах сохранения. К ним относятся законы сохранения массы, количества движения, энергии.
Уравнения записываются в интегральной или дифференциальной форме в зависимости от типа решаемой задачи.
Рассмотрим систему уравнений, которая описывает динамику течений невязкой (идеальной ) жидкости.
Идеальной называется жидкость, у которой нет трения, т.е. жидкие элементы, могут свободно перемещаться в касательном направлении один относительно другого. В такой жидкости отсутствует теплообмен между различными её участками, а тангенциальные и нормальные силы внутреннего трения не возникают.
В идеальной жидкости существуют силы только нормального давления, однозначно определяемые её плотностью и температурой. Идеальная жидкость - абстракция, которой можно пользоваться на практике, если скорости изменения деформации в жидкости малы. Поскольку касательные напряжения связаны с понятием вязкости, можно утверждать, что идеальная жидкость - это невязкая жидкость.
Движение идеальной жидкости будем рассматривать в поле сил, характеризуемых объёмной плотностью на единицу объёма жидкости.
1. Уравнение неразрывности
Вывод основных гидродинамических уравнений начнём с вывода уравнения неразрывности, выражающего закон сохранения в гидродинамике.
Математическое описание состояния движущейся жидкости осуществляется с помощью функций, определяющих распределение скоростей ... и каких-либо двух термодинамических величин, например, ... - давления и ... - плотности.
Скорость, давление и плотность жидкости будем относить к данным точкам пространства, а не к определённым частицам жидкости, передвигающимся во времени и в пространстве. То есть будем пользоваться переменными Эйлера.
...
...
Рассмотрим некоторый объём ... пространства. Количество (масса) жидкости в этом объёме есть
...
Через элемент поверхности ..., ограничивающей рассматриваемый объём, в единицу времени протекает количество ........ жидкости.
Вектор ... по абсолютной величине равен площади элемента поверхности и направлен по внешней нормали к ней. Тогда ... положительно, если жидкость вытекает из объёма, и отрицательно, если жидкость втекает в него.
Полное количество жидкости, вытекающей в единицу времени из объёма ...
...
где ... - поверхность, ограничивающая выделенный объём ... .
С другой стороны, уменьшение количества жидкости в объёме ... можно записать в виде
...
Приравнивая оба выражения, получаем:
...
Интеграл по поверхности преобразуем в интеграл по объёму
...
Таким образом,
...
Поскольку это равенство должно иметь место для любого выделенного объёма, то должно быть равным нулю подынтегральное выражение, т.е.
...
Получили уравнение неразрывности.
... выражение ... можно записать
...
В декартовых координатах
...
Вектор
...
называют плотностью потока жидкости.
Его направление совпадает с направлением движения жидкости, а абсолютная величина определяет количество жидкости, протекающей в единице времени через единицу площади, расположенной перпендикулярно к скорости.
2. Уравнения Эйлера
Выделим в жидкости конечный объём. Полная сила, действующая на выделенный объём жидкости, равна интегралу
...
взятому по поверхности рассматриваемого объёма. Преобразуем его в интеграл по объёму, имеем
...
Отсюда видно, что на каждый элемент объёма ... жидкости действует со стороны окружающей его жидкости сила - ... . Тогда на единицу объёма жидкости действует сила ... .
Мы можем теперь написать уравнение движения элемента объёма жидкости, приравняв силу ... произведению массы ... единицы объёма жидкости на её ускорение
... (1)
Стоящая здесь производная ... определяет не изменение скорости жидкости в данной неподвижной точке пространства, а изменение скорости определённой передвигающейся в пространстве частицы жидкости. Эту величину необходимо выразить через величины, относящиеся к неподвижным в пространстве точкам.
Изменение скорости ... данной жидкой частицы в течение времени ... складывается из двух частей:
- из изменения скорости в данной точке пространства в течение времени ...
- и из разности скоростей (в один и тот же момент времени) в двух точках, разделённых расстоянием ..., пройденным рассматриваемой частицей в течение времени ... .
Первая из этих частей равна
...
где производная берётся ... при постоянных ...,
т.е. в заданной точке пространства.
Вторая часть изменения скорости равна
...
Таким образом,
...
или, разделив обе скорости равенства на ...
...
Подставив полученное соотношение в (1), получим
...
Полученное уравнение движения жидкости - уравнение Эйлера (1755), и является одним из основных в гидродинамике.
Если жидкость находится в поле тяжести, то на каждую единицу её объёма действует ещё сила ... , где ... есть ускорение силы тяжести. Эта сила должна быть прибавлена к правой стороне уравнения и уравнение принимает вид:
...
При выводе уравнений движения мы совершенно не учитывали процессов диссоциации энергии, которые могут иметь место в текущей жидкости вследствие внутреннего трения (вязкости) в жидкости и теплообмена между различными её участками.
Отсутствие теплообмена между отдельными участками жидкости означает, что движение происходит адиабатически. Таким образом, движение идеальной жидкости следует рассматривать как адиабатическое.
При адиабатическом движении энтропия каждого участка жидкости остаётся постоянной при перемещении последнего в пространстве. Обозначая ... энтропию, отнесённую к единице массы жидкости, мы можем выразить адиабатичность движения уравнением
...
полная производная по времени означает изменение энтропии заданного перемещающегося участка жидкости. Эту производную можно записать в виде
...
Это есть общее уравнение, выражающее собой адиабатичность движения идеальной жидкости. С помощью уравнения неразрывности его можно написать в виде уравнения неразрывности для энтропии.
...
где ... - плотность потока энтропии.
Иногда это условие используют в более простой форме. Если в некоторый момент времени энтропия одинакова во всех точках объёма жидкости, то она остаётся везде одинаковой и неизменной со временем и при дальнейшем движении жидкости.
В этих случаях уравнение адиабатичности записывается в виде
...
Изэнтропичностью движения можно воспользоваться и представить уравнения Эйлера в другом виде. Из термодинамических соотношений известно