149951 (732487), страница 11
Текст из файла (страница 11)
Под идеальным газом принято понимать газ, в котором взаимодействие молекул между собой осуществляется посредством упругих столкновений, а линейный размер молекулы по сравнению со средним молекулярным расстоянием мал.
Существенное отличие свойств воздуха от свойств идеального газа наблюдается при высоких давлениях и низких температурах.
2. Уравнение теплоёмкости газа.
Рассмотрим некоторый произвольный термодинамический процесс. Количество теплоты ..., подведенное к 1 кг газа в этом процессе, выразим через приращение температуры газа ... :
...
Множитель С, представляющий собой количество теплоты, необходимое для подогрева 1 кг газа на 1 град в данном процессе, называется удельной теплоёмкостью.
Удельная теплоёмкость существенно зависит от характера процесса.
Рассмотрим теплоёмкости, соответствующие процессам, происходящим при постоянном объёме ... и давлении ... . Зависимость между удельными теплоёмкостями идеального газа ... и ... определяется следующим соотношением.
...
В термодинамике и газодинамике важное значение имеет отношение теплоёмкостей ...... Величина ... зависит от структуры молекулы газа. Так, для идеальных одноатомных газов ... = 1.66, для двухатомных газов, в том числе и для воздуха, ... = 1.4.
3. Первый закон термодинамики.
Пусть некоторое количество газа находится в равновесии. Обозначим через ... количество подведённой к газу извне теплоты. В общем случае подвод теплоты приводит к изменению внутренней энергии газа ... и объёма. ПРи изменении объёма газ совершает внешнюю работу, равную ... . Поэтому
...
или, относя все величины к 1 кг массы газа, получаем
...
где ... - суммарная теплота, подведенная к 1 кг массы газа извне, ... - изменение внутренней энергии 1 кг массы газа, ...... - работа, затрачиваемая на расширение (... - объём, занимаемый 1 кг массы газа).
При постоянном объёме ... = 0, ... = 0 или ......., т.е. вся теплота, подводимая к газу, ..... тратится на увеличение его внутренней энергии. Поэтому
...
Пренебрегая зависимостью ... от температуры и имея в виду, что при .......0 ... = 0, имеем
...
Внутрення энергия является одной из функций состояния газа. Используя формулы
...
Уравнение является математическим выражением первого закона термодинамики.
Энтальпия. Введём ещё одну функцию состояния ..., определяемую соотношением
...
Или, пренебрегая изменением ...,
...
Эта функция называется энтальпией. Из определения энтальпии следует, что её приращение ... представляет собой приращение теплоты ... в процессе ... = ... Имея это в виду, из первого закона термодинамики (...........................), интегрируя его в предположении ..........., получим
...
Используя уравнение состояния (......) и соотношение ......., имеем
...
Энтропия. При изучении течения газа часто используют понятие энтропии. Эта функция определяется дифференциальным соотношением
...
Найдём связь между энтропией и энтальпией
...
из первого закона термодинамики
...
следует
...
...
...
...
... - тензор плоскости импульса.
...
...
Течение в трубе.
...
Оператор Лапласа
...