149951 (732487), страница 2
Текст из файла (страница 2)
Плотность жидкости в данной точке определяется как предел: ...
В системе СИ единица плотности ...
В технических приложениях часто используется такая единица
СИ - вес единицы объёма или удельный вес:
...
Объёмные и поверхностные силы
Поверхностные силы (сжатие, давление, растяжение, силы трения) приложены к поверхностям, ограничивающим объём жидкости.
Объёмные силы (например, силы тяжести, сила инерции, электромагнитная сила) распределяются по всему объёму жидкости.
Пусть ... - главный вектор объёмных сил, действующих в объёме ... . Тогда вводится понятие плотности распределения
объёмных сил в виде предела
...
Рассмотрим поверхностные силы. Пусть ... - главный вектор силы, приложенной с одной стороны, к площадке ... . Индекс "..."
означает не проекцию силы, а указание на то, что сила действует на
площадке ... , произвольно ориентированной в пространстве. Введём
в рассмотрение вместо силы напряжение
...
Рассмотрим тетраэдр, три грани которого параллельны координатным плоскостям, а четвёртая ориентирована произвольным образом.
...
...
Обозначим площади граней ...
Ориентация площади определяется единичной нормалью ... с направляющими косинусами ... . Тогда справедливы соотношения
...
Пусть высота тетраэдра равна ... . Тогда его объём равен
... . Воспользуемся вторым законом Ньютона и со-
ставим уравнение движения тетраэдра:
...
...
где ... - ускорение центра масс тетраэдра.
Переходя к пределу (устремляя ... ), получим
...
Получим формулу Коши, утверждающую, что напряжения на гранях образуют систему взаимно уравновешенных напряжений.
Проектируя векторное уравнение на оси координат, получим три скалярных уравнения:
...
...
...
Напряжённое состояние в произвольной точке сплошной среды характеризуется девятью компонентами, образующими тензор второго ранга или диаду:
...
Тензор напряжений в произвольной точке пространства обладает свойством симметрии (теорема Коши о взаимности касательных напряжений)
...
Он содержит лишь шесть независимых компонент.
Рассмотрим равенство Коши для случая отсутствия касательных напряжений, т.е. полагая ...= 0. Поскольку вязкость по гипотезе Ньютона проявляется только при наличии неоднородного поля скоростей, сделанное предположение будет соответствовать либо покою жидкости, либо её движению как твёрдого тела6 либо равенству нулю вязкости (... = 0).
Итак
...
С другой стороны,
...
Сравнивая равенства, находим
...
Введём понятие давления Р согласно равенствам
...
Таким образом, в случае отсутствия касательных напряжений давление в точке является скалярной величиной, т.е. оно не зависит от ориентации площадки, проходящей через рассматриваемую точку. Знак минус означает, что давление рассматривается как сжимающее напряжение.
Температура жидкости выражается в единицах градусов абсолютной шкалы
...
2. Основные свойства реальных жидкостей
Сжимаемость. При сжатии реальные жидкости незначительно уменьшаются в объёме. Свойство жидкостей изменять объём при изменении давления характеризуется коэффициентом объёмного сжатия ... , представляющим собой относительное изменение объёма жидкости ... при изменении давления Р на единицу
...
где ... - первоначальный объём жидкости, ...
... - изменение объёма ... при увеличении давления на
величину ...
Модулем объёмной упругости жидкости ... называется величина, обратная коэффициенту объёмного сжатия ... . Для воды при атмосферном давлении он составляет около 2000 МПа.
При повышении давления на 0.1 МПа объём воды уменьшается всего лишь на ... первоначального объёма.
Коэффициент объёмного сжатия для других капельных жидкостей такого же порядка, поэтому в большинстве случаев сжимаемостью капельных жидкостей можно пренебречь.
Температурное расширение
Это свойство жидкостей изменять свой объём. Характеризуется коэффициентом температурного расширения ... , представляющим собой относительное изменение объёма жидкости ... при изменении температуры ... на 1 С и постоянном давлении
...
Коэффициент температурного расширения ... при .. = 20 С и давлении ... Па:
для воды 0.00015 С
для спирта 0.00110 С
для нефти 0.00060 С
Вязкость - это способность жидкости оказывать сопротивление скольжению одного слоя относительно другого. Силы, возниающие при скольжении слоёв, называют силами внутреннего трения или силами вязкости. Появление их обусловлено наличием межмолекулярных связей между движущимися слоями. Вязкость характеризует степень подвижности частиц жидкости или текучести.
Согласно гипотезе, высказанной впервые Ньютоном в 1686 году, а затем экспериментально обоснованной профессором Н.И.Петровым в 1863 году, силы внутреннего трения, возникающие между соседними движущимися слоями жидкости, прямо пропорциональны градиенту скорости, площади трущихся слоёв и зависит от свойств жидкости, т.е.
...
или
...
где Т - сила трения
... - площадь поверхности трущихся слоёв
... - динамический коэффициент вязкости
... - касательное напряжение
... - градиент скорости
Из соотношения для силы трения можно определить динамическую вязкость
...
В гидравлических расчётах часто используется кинематическая вязкость, равная отношению динамической вязкости ... к плотности ... жидкости:
...
Вязкость жидкостей зависит от температуры. С увеличением температуры вязкость капельной жидкости уменьшается, а вязкость газов, наоборот, возрастает.
Кинематическая вязкость воды
при ... = 20 имеет значение 101 ...
при ... = 40 имеет значение 66 ...
при ... = 60 имеет значение 48 ...
Вязкость жидкостей измеряют с помощью приборов - вискозиметров.
Для неньютоновских (бингемовских) жидкостей соотношение между касательными наряжениями ... и градиентом скорости .... имеет вид
...
... - касательное напряжение в состоянии покоя.
Движение вязкопластических жидкостей начинается лишь после того, как внешней силой преодолено сопротивление сдвига ... .
3. Поверхностное натяжение
Молекулы жидкости, находящиеся на свободной поверхности (трение, раздела жидкость - газ или жидкость - пар), испытывают одностороннее воздействие со стороны соседних молекул. Поэтому на криволниейной поверхности должны возникать растягивающие усилия. Для количественного описания этого явления ещё в 1805 году Юнгом была проведена классическая аналогия с упругой плёнкой. Натяжение этой плёнки, т.е. усилие, приходящееся на единицу длины поперечного разреза плёнки, характеризуется коэффициентом поверхностного натяжения
...
Сила поверхностного натяжения стремится сократить площадь свободной поверхности. Их действие впервые обнаружено в капилярах, поэтому эти силы до сих пор часто называют капилярными.
Величина ... зависит прежде всего от природы контактирующих сред. Числовые значения его для некоторых пар приведены в таблице.
Таблица
Вещество | Контактирующая среда | Температура, К | Коэф. пов. натяжения ... |
| Вода | Воздух | 293 | 72,8 |
| | | |
| Жидкий | Пар. вещест-| 373 | 58,8 |
| водород | ва | | |
| | | | |
| Жидкий | | 21 | 2,0 |
| кислород | то же | 91 | 13,0 |
-----------------------------------------------------------------
Коэффициент поверхностного натяжения ... падает с ростом температуры и практически не зависит от давления. Поверхностное натяжение может быть существенно снижено с помощью поверхностно-активных веществ, к числу которых относятся моющие средства.
Величина ... может служить мерой свободной энергии, которой обладает граница раздела:
...
где ... - площадь свободной поверхности.
В этом случае
...
что согласуется с ранее указанной размерностью.
Существование поверхностного натяжения должно приводить к возникновению на криволинейной поверхности перепада давлений, которые будут зависеть от конкретной геометрии поверхности.
Для объяснения этого факта рассмотрим равновесие элемента неплоской поверхности с линейными размерами ... и ... и главными радиусами кривизны ... и ... соответственно.
...
...
Равнодействующие сил поверхностного натяжения, действующих на границе выделенного контура, равны ... и ..., а возникающая вследствие этого сила, действующая по нормали к выделенной площадке, в первом приближении равна
...
С учётом того, что
...
имеем выражение для силы
...
Эта величина, очевидно, и есть скачок давления на поверхности раздела двух сред, обусловленный поверхностным натяжением.
Обозначив теперь через ... и ... давление в средах на границе раздела из условия равновесия элементарной площадки, запишем соотношение
...
которое называется формулой Лапласа.
Для цилиндрических поверхностей с круговым поперечным сечением радиуса ... имеем ... = ..., ... = ... и формула Лапласа принимает вид:
...
В случае сферических поверхностей ... = ... = ... и тогда получаем:
...
Если радиус сферической полости мал, то давления, развиваемое поверхностным натяжением, могут стать значительными.
...
...
Весьма характерной является система газ - жидкость - твёрдая стенка. В этом случае вводят значение краевого угла (угла ... или угла смачивания).
Характерные значения краевых углов приведены в таблице
Таблица
| | Тв. вещества| | Жидкость | | Кр. угол, град | | | | |
| | | | | Сталь | | | Сталь | | Вода Жидкий водород Жидкий кислород Ртуть | | 70 - 90 | | 0 | | 0 | | 128...148 | |
Если ... , жидкость называется смачивающей, если ...
- несмачивающей.
Высота подъёма или опускания жидкости в капиляре определяется с помощью соотношения
...
где ... - диаметр капиляра, а ... - угол смачивания.
Уравнение состояния воды. Адиабата Тэйда
Опыт показывает, что между основными параметрами, характеризующими состояние газа (давление, плотность, температура) существует определённая зависимость.
Уравнение
...
устанавливающее связь между этими параметрами, называется уравнением состояния.
Поэтому состояние любого газа определяется двумя параметрами (например, плотностью и температурой), так как третий параметр (давление) можно найти из уравнения состояния.
Для идеального газа уравнение состояния можно представить в виде
...
где ... - газовая постоянная, зависящая от
относительной молекулярной массы ... . Для воздуха ... = 29,
... = 287 ... .
Существенное отклонение свойств воздуха от свойств идеального газа наблюдается при высоких давления и низких температурах. На состояние газа влияют такие процессы, как диссоциация и ... .
Уравнение состояния воды
Пусть в равновесном состоянии справедливо уравнение
. Тогда при малых отклонениях параметров Р и Т от ... и ... уравнение состояния воды в линейном приближении можно записать в форме, предложенной Буссинеском:
...
где - коэффициент изотермической сжимае-
мости
- коэффициент теплового расширения При температуре 293 К
...
Зависимость ... от давления весьма стойкая.
Адиабатические процессы, характеризующиеся отсутствием внешнего подвода или отвода тепла, протекают в воде практически при постоянной температуре. Это объясняется особенностью молекулярного строения жидкости. Ввиду большой плотности упаковки молекулы жидкости помимо обмена импульсами в ... движении испытывают дополнительные силы отталкивания. При сжатии жидкости даже без нагревания развивается большое внутреннее давление нетеплового происхождения. Изменение давления происходит только в результате давления происходит только в результате изменения его механической компоненты.
В случае значительных изменений давления связь между плотностью и давлением становится существенно нелинейной. Наиболее широкое распространение получило эмпирическое уравнение ...
, которое носит название уравнения Тэйда:
...
где С и ... - константы ( С ... 3200 ... Па, ... = 7.15).