DIP (729404), страница 5
Текст из файла (страница 5)
Uвх = 9 В ;
изменение входного напряжения :
максимальный ток нагрузки :
Iн max = 3,6 A ;
выходное напряжение :
Uвых. = 5 В
Плавная регулировка напряжения ( выходного ) в пределах от 4 В до 6 В.
В качестве стабилизатора выбираем схему компенсационного транзисторного стабилизатора напряжения последовательного типа.
Стабилизатор состоит из регулирующего элемента( транзисторы ), усилителя постоянного тока , источника опорного напряжения , делителя напряжения и резисторов . Предусмотрена возможность регулировки выходного напряжения - для этого в цепь делителя включён переменный резистор.
Регулирующий элемент состоит из трёх транзисторов . Данное количество выбрано исходя из того , что ток нагрузки превышает 2А ( 1 , ст. 328 ).
Стабилизатор выполнен на транзисторах структуры n = p = n.
Определяем параметры и выбираем транзисторы.
Транзистор VT1
Определяем максимальный ток коллектора :
Iк max = 1,2 Iн max ( 1 , ст. 329 )
Определяем максимальное напряжение коллектор – эмиттер :
Uк э max = Uвх. + Uвх. – Uвых. ( 1 , ст. 329 )
Uк э max = 9 + 2 – 5 = 6 В
Определяем предельную рассеиваемую мощность коллектора :
Рк = Uк э max Iк max ( 1 , ст. 329 )
По результатам расчётов выбираем из справочника транзистор VT1 , удовлетворяющий условиям :
Приведённым условиям удовлетворяет транзистор КТ 805 Б с параметрами :
Рк = 30 Вт
Uк э max = 135 В
Iк max = 5 А
h2 1 э = 15
Iк б 0 = 70 м А
Транзистор VT 2
Максимальный ток коллектора :
Максимальное напряжение коллектор – эмиттер :
Uк э max = Uвх. + Uвх. – Uвых. ( 1 , ст.329 )
Uк э max = 9 + 2 – 5 = 6 В
Предельная рассеиваемая мощность коллектора :
По результатам расчётов выбираем из справочника транзистор удовлетворяющий условиям , которые указаны в расчётах транзистора VT1.
Приведённым условиям удовлетворяет транзистор КТ 603 А с параметрами:
Pк = 2 Вт
Uк э max = 30 В
Iк max = 0,3 А
h2 1 э = 15
Транзистор VT 3
Максимальный ток коллектора :
Максимальное напряжение коллектор – эмиттер :
Uк э 3 max = Uк э 2 max ( 1 , ст. 329 )
Uк э 3 max = 6 В
Предельная рассеиваемая мощность коллектора :
По результатам расчётов выбираем из справочника транзистор VT3. Расчётным параметрам удовлетворяет транзистор КТ 315 А с параметрами :
Рк max = 0,15 Вт
Uк э max = 25 В
Iк max = 0,1 А
h2 1 э = 20
Iк б 0 = 10 м к А
Транзистор VT 4
Максимальный ток коллектора :
Iк max = 5 10-3 А ( 1 , ст. 329 )
Максимальное напряжение коллектор – эмиттер :
Uк э max = Uвых. + Uвых. – UV D 1 ( 1 , ст. 329 )
Uк э max = 5 + 1 – 3 = 3 В
Предельная рассеиваемая мощность коллектора :
Рк max = 5 10-3
3 = 1,5
10-2 Вт
По результатам расчётов выбираем из справочника транзистор VT 2. Расчётным параметрам удовлетворяет транзистор КТ 315 Ж с параметрами :
Рк max = 100 мВт
Uк э max = 15 В
h2 1 э = 30
Выбираем стабилитрон VD 1.
Определяем напряжение стабилизации стабилитрона :
Uст. = Uвых. - Uвых. – 2 ( 1 , ст. 329 )
Uст. = 5 – 1 – 2 = 3 В
По расчитанному напряжению стабилизации выбираем в справочнике стабилитрон наиболее подходящий по параметрам
КС 133 А с параметрами :
Uст. ном. = 3,3 В
Iст. ном. = 0,03 А
Рассчитываем номиналы сопротивлений :
Выбираем значение R1 ближайшее из стандартного ряда R1 =24 Ом
Выбираем ближайшее значение из стандартного ряда и принимаем R2 = 180 Ом.
R3 + R4 + R5 = Rдел. ( 1 , ст. 329 )
Выбираем номинал сопротивления из стандартного ряда :
R4 = 150 Ом
Принимаем для R5 ближайшее значение из стандартного ряда
R5 = 470 Ом
R3 = Rдел. - R4 - R5 ( 1 , ст. 329 )
R3 = 833 – 150 – 470 = 213 Ом
Принимаем значение R3 ближайшее из стандартного ряда
R3 = 200 Ом
Из стандартного ряда принимаем :
R6 = 73 Ом
Выбираем значение R7 ближайшее из стандартного ряда :
R7 = 510 Ом
Определяем рассеиваемую мощность на сопротивлениях :
Мощность сопротивлений выбираем из стандартного ряда с номиналом большим , чем расчитанная рассеиваемая мощность.
R1 = 2 Вт
R6 = 0,5 Вт
R2 = 0,125 Вт
R3 = 0,125 Вт
R4 = 0,125 Вт
R5 = 0,125 Вт
R7 = 0,125 Вт
По результатам вышеприведённых расчётов записываем параметры схемы стабилизатора.
VT 1 – КТ 805 Б
VT 2 – КТ 603 А
VT 3 – КТ 315 А
VT 4– КТ 315 Ж
VD 1 – КС 133 А
VD 2 – КД 202 Г
VD 3 – КД 202 Г
VD 4 – КД 202 Г
VD 5 – КД 202 Г
С 1 – 1000 мкФ ; 25 В
R 1 – 24 Ом ; 2Вт
R 2 – 180 Ом ; 0,125 Вт
R 3 – 200 Ом ; 0,125 Вт
R 4 – 150 Ом ; 0,125 Вт – переменный резистор.
R 5 – 470 Ом ; 0,125 Вт
R 6 – 73 Ом ; 0,5 Вт
R 7 – 510 Ом ; 0,125 Вт
Описание работы стабилизированного источника питания 5 В.
Источник питания функционально состоит из понижающего трансформатора , выпрямителя и стабилизатора.
Переменное напряжение и вторичной обмотки трансформатора Тр 1 поступает на выпрямитель VD2 VD5. Выпрямитель выполнен на мостовой схеме , данная схема выпрямления из всех вариантов двухполупериодных выпрямителей обладает наилучшими технико – экономическими показателями. После выпрямления напряжения сглаживается конденсатор С1. Далее напряжение порядка 7
9 В поступает на стабилизатор , который автоматически поддерживает постоянство напряжения на нагрузке с заданной степенью точности. В нашем случае применён транзисторный стабилизатор напряжения компенсационного типа.
Стабилизатор состоит из регулирующего элемента ( VT 1 VT 3 ). Схемы сравнения ( VT 4 ) , источника опорного напряжения ( VD 1 , R 2 ) , делителя напряжения ( R 3
R 5 ) и резисторов ( R 6 , R 7 ) , обеспечивающих режим транзисторов ( VT 2 , VT 3 ). Предусмотрена возможность регулировки выходного напряжения , для этого в цепь делителя включён переменный резистор R 4.
Работа стабилизатора : схема свравнения выполнена на транзисторе VT 4. Стабилитрон VD 1 фиксирует потенциал эмиттера VT 4. Потенциал базы зависит от тока с протекающего через R 3, R4, R 5. С помощью переменного резистора R 4 выставляем точно , нужное напряжение +5 В. Если напряжение на нагрузке , например увеличилось , то это будет означать то , что ток через R 3 , R 4 , R 5 тоже увеличивается.
Следовательно , потенциал базы транзистора VT 4 станет более положительным по отношению к эмиттеру , чем был раньше. Поэтому транзистор VT 4 приоткроется , потенциал базы транзистора VT 3 уменьшится. Следовательно , транзистор VT 3 прикроется и соответственно прикроются транзисторы VT 2 и VT 1. В результате напряжение на эмиттере транзистора VT 1 уменьшится , а напряжение на нагрузке останится неизменным. Аналогично стабилизатор будет работать и при уменьшении напряжения на нагрузке.
4.5 АЛГОРИТМ СИСТЕМЫ УПРАВЛЕНИЯ АВТОМАТИЧЕСКОЙ ЛИНИЕЙ ГАЛЬВАНИРОВАНИЯ
Алгоритм программы работы системы управления автоматической линии гальванирования построен на основе требования опроса датчиков положения , расположенных на пути следования автооператора и в зависимости от их состояния выдачи соответствующей команды.
Алгоритм работы системы управления автоматической линии гальванирования приведён на чертеже.
Данный алгоритм в режиме отработки цикла осуществляет опрос состояния датчиков положения автооператора.
При срабатывании соответствующего датчика алгоритм осуществляет подачу соответствующей команды на выполнение соответствующей технологической операции , после окончания которой продолжается отработка цикла , пока не закончится время работы линии или не закончится технологический процесс предварительной обработки деталей. В этом случае алгоритм осуществляет переход к началу технологического процесса.