179320 (685658), страница 9
Текст из файла (страница 9)
;
.
Абсолютные разности в отличие от индексов – числа именованные, и потому они более наглядны, а в стоимостном измерении сопоставимы.
Следует помнить, что абсолютные разности классической природы всегда гарантируют баланс независимо от того, замыкается ли анализ рамками совокупности (генеральной части) или отдельными ее представителями. При этом абсолютные разности не образуются на базе модификаций классических индексов.
Метод цепных подстановок. Пусть исходный признак Z рассчитывается по формуле Z = aBC. После ранжирования факторов (Z = BCa) запишем общий индекс, агрегатные индексы и соответствующие абсолютные разности:
Абсолютные разности для характерного представителя совокупности следующие:
Полная идентичность записи и последовательности процедур анализа позволяет итоговый и промежуточные результаты для отдельных единиц совокупности сопоставлять с такими же результатами по совокупности в целом. Кроме того, результаты абсолютных разностей можно представить в относительном измерении:
и т.д. В таком варианте результаты могут быть отнесены к индексной базе, что позволяет получить целый набор индексов: для единиц совокупности – индивидуальные и групповые, а для совокупности в целом – агрегатные частные и модифицированные индексы.
Система модифицированных агрегатных индексов используется в статистике для корректировки средних, для уточнения показателей вариации и для разработки шести статистических моментов.
Метод индивидуального учета факторов. Выполним аналогичную процедуру формирования абсолютных разностей. Запишем общий и агрегатные индексы:
.
Абсолютные разности для совокупности
.
Абсолютные разности для отдельного представителя совокупности
Общие выводы о целесообразности расчета абсолютных разностей справедливы и в этом случае. Однако этот метод менее надежен, чем предыдущий, что сказывается и на результатах анализа через абсолютные разности. Проявляется это в нарушении баланса уже при четырех признаках. Допустимые пределы дисбаланса для количественных признаков с устойчивым модулем качества 2-4 %, с неустойчивым 3-5 %.
14. Общие индексы качественных признаков – индексы средних
Эта группа индексов представляет собой подсистему общих индексов качества и агрегатных индексов, сформированных на их основе. Построение общих индексов такого типа имеет ряд особенностей:
1. Поскольку изучаемым общим признаком является качественный, то сопоставляются его средние уровни в пределах совокупности (генеральной ее части).
2. Любой общий индекс качества можно представить как комбинацию общего индекса количества и индивидуального индекса количества.
3. Система агрегатных индексов, построенных на основе общего индекса качества, содержит только два индекса: индекс фиксированного состава и индекс структурных сдвигов.
4. Комплексный индексный анализ обязательно дополняется анализом абсолютных разностей, которые регистрируют изменение количественного признака, основным элементом которого является изучаемый качественный признак.
5. Для тех качественных признаков, которые имеют обратную связь (производительность и трудоемкость, фондоемкость и фондоотдача) составляются два варианта общих индексов качества: прямой и обратный.
Из общей теории статистики известно, что качественные признаки – мера качества, которая может быть индивидуальной (для каждой единицы совокупности) или общей (средний уровень по изучаемой совокупности). Поэтому формирование общего индекса качественного признака предполагает соизмерение среднего его значения по совокупности или генеральной части соответственно в отчетном и базисном периоде.
Рассмотрим специфику формирования таких индексов на примере показателя себестоимости. Общая формула для индекса себестоимости имеет вид
где с1 и с0 – показатели себестоимости по единицам совокупности соответственно в отчетном и базисном периодах; q1 и q0 – объем выпуска продукции по единицам совокупности в отчетном и базисном периодах;
и
– средняя себестоимость по совокупности в отчетном и базисном периодах.
Полученное выражение не является стадией комплексного статистического анализа, а используется для определения группового и общего индексов количества.
Вернемся к развернутой записи общего индекса: первый сомножитель в ней – общий индекс количества
Поменяв индексы местами и разделив второй на дробь
получим
.
Выполнив сначала действия в скобках, после преобразований получим произведение агрегатных индексов общего индекса себестоимости:
.
Общий индекс в такой записи получил название индекса переменного состава. Первый из агрегатных индексов – индекс фиксированного состава; второй – индекс структурных сдвигов.
Индекс фиксированного состава регистрирует изменение себестоимости (общего признака) за счет колебаний себестоимости по единицам совокупности. Эти изменения фиксируются при неизменной структуре совокупности. Последняя оценивается через признак, жестко связанный с изучаемым, – объем производства. При этом относительные величины структуры формируются, исходя из фактических значений такого признака.
Индекс структурных сдвигов, несмотря на необычность его записи, не нарушает записи общего индекса: делимое (числитель) – средняя себестоимость базисного периода при фактической структуре выпуска продукции; делитель (знаменатель) – та же средняя, но при базовой структуре выпуска продукции. Таким образом, этот индекс регистрирует изменение себестоимости вследствие изменений в структуре производства.
Кроме содержательных различий агрегатных индексов, различны и их функции: индекс фиксированного состава регистрирует изменение себестоимости под влиянием внутренних факторов, индекс структурных сдвигов – под влиянием внешних факторов.
В конкретной практике классическая форма индекса фиксированного состава не всегда возможна (например, при расчете индекса цен). В таких случаях используют специальные приемы формирования таких индексов, в основе которых лежит модуль индекса Струмилина.
Абсолютные разности. Абсолютные разности всегда определяются только по количественным признакам. Это требование статистики является исходным для анализа абсолютных разностей любой системы взаимосвязанных индексов. В рассматриваемом случае количественным признаком однородного содержания с изучаемым является сумма производственных затрат (издержки производства). Обозначим ее С. Тогда
С = сiqi,
где сi – cебестоимость продукции у единицы совокупности; qi – объем продукции у каждой из единиц изучаемой совокупности.
Абсолютная разность сложного количественного признака (в данном случае производственных затрат) определяется как разность числителя и знаменателя его общего индекса:
где С – абсолютная разность производственных затрат; с1 и с0 – индивидуальные значения себестоимости у единиц изучаемой совокупности в отчетном и базисном периодах соответственно; q1 и q0 – объемы производства по единицам совокупности в отчетном и базисном периодах соответственно.
Если вместо индивидуальных значений себестоимости использовать среднюю себестоимость
то формула для расчета производственных затрат примет вид
Следовательно, изменение производственных затрат можно рассматривать в зависимости от колебаний фактических значений средней от плановых себестоимости и объемов производства в целом по изучаемой совокупности. Иначе говоря, абсолютная разность производственных затрат может быть представлена как сумма
где ΔСq и
– абсолютные разности производственных затрат вследствие изменений объема производства и средней себестоимости соответственно.
В свою очередь, первое слагаемое, которое регистрирует изменение производственных затрат под влиянием объема производства, в развернутом виде может быть записано следующим образом:
Второе слагаемое, характеризующее изменение производственных затрат из-за колебаний средней себестоимости, может быть выражено так:
Это общая запись абсолютной разности сложного признака (производственных затрат), в состав которого входит изучаемый качественный признак (себестоимость); ее можно дифференцировать, используя формулы агрегатных индексов, выступающих как структурные элементы индекса переменного состава: индекса фиксированного состава
и индекса структурных сдвигов
.
В дифференцированной записи
Запишем слагаемые в развернутом виде:
Таким образом, первое слагаемое
является разностью между числителем и знаменателем индекса фиксированного состава, а составляющая
– соответственно разностью делимого и делителя индекса структурных сдвигов, умноженной на суммарный объем производства в отчетном периоде.
Из стоимостных качественных показателей только себестоимость позволяет сформировать индекс фиксированного состава. Все остальные стоимостные показатели для выполнения индексного анализа требуют применения индексов Струмилина.
Особенности построения общих индексов качества обратным методом. Рассмотрим эти особенности на примере индекса производительности труда. Введем следующие обозначения: р – производительность труда; Q – объем производства; N – численность работников (затраты живого труда). Тогда
.
















