179320 (685658), страница 7
Текст из файла (страница 7)
Поскольку
, то для нахождения общей дисперсии через групповую необходимо знать еще одно слагаемое. Им является межгрупповая дисперсия, которая регистрирует изменение признака вследствие колебания внутригрупповых средних по сравнению с общей средней. Межгрупповая дисперсия
Она оценивает колебание признака под воздействием матричных факторов, формирующих внешнюю среду совокупности.
Правило трех сигм. Если общая и внутригрупповые средние являются модулями, то правомерно равенство
Это равенство в статистике получило название «правило трех сигм». Если средние (общая и внутригрупповые) устойчивы, то указанное правило принимается с рядом ограничений. Основное ограничение имеет вид
Кроме того, разность
не должна выходить из интервала от 0,842 до 0,982. Нижний крайний уровень данного интервала соответствует комплексным признакам с высокой долей качества, верхний – стандартизованным качественным признакам.
Это правило является базисной процедурой для выполнения дисперсионного анализа. Оно может использоваться в явном или дифференцированном виде. Кроме того, существует прямой (от агрегированного варианта к дифференцированному) и обратный (от дифференцированного к более агрегированному) порядок формирования балансового уравнения связи. Минимальное число элементов этой связи – от двух до четырех, максимальное – 12.
В экономической статистике горной промышленности агрегированный вариант включает в себя не более трех слагаемых. Для анализа показателей биржевой деятельности и банковских показателей их число увеличивают до четырех. В дифференцированном варианте дисперсионного анализа число показателей еще больше: для горной промышленности 6; для бирж 10-12; для банков 12.
Число слагаемых не влияет на сложность проведения дисперсионного анализа, важно лишь соблюсти следующие необходимые условия:
однородность совокупности по изучаемому признаку;
соответствие числа групп, выделенных в анализируемой совокупности, процессу накопления качества по изучаемому признаку;
улучшение качественной основы изучаемого признака в пределах выделенных групп.
Схема дисперсионного анализа. Дисперсионный анализ проводится на основе «правила трех сигм» (общая дисперсия равна сумме групповой и межгрупповой). При этом в анализе выделяется два направления. Цель первого – характеристика устойчивости признака с учетом влияния на его колебания внешних признаков; цель второго – оценка надежности средней.
Первое направление дисперсионного анализа предполагает следующие процедуры:
1. Определение доли межгрупповой дисперсии в общей:
Это выражение, вытекающее из «правила трех сигм», без корректировки можно использовать только для количественных признаков. Для качественных признаков эта формула может использоваться, если значение функционального признака выше частного от деления факториальных признаков на 3-5 %. Если это условие не выполняется, то в формулу вводится корректирующий коэффициент Е:
.
2. Установление нормативных пределов степени влияния внешних факторов на колебания изучаемого признака. Нормативные пределы влияния внешних факторов зависят от того, в каких пределах этим влиянием можно пренебречь. Нормативы дифференцированы по содержанию признака и по степени стандартизации признака. Для количественных стандартных признаков нормативы ужесточаются. Для количественных признаков допустимое ограничение γσ от 15 до 18 %; для качественных стандартных признаков: соответственно от 1 до 3 %; для количественных с высокой долей качества и одновременно стандартизованных признаков: 5-8 %.
3. Характер стандартности признака.
Второе направление дисперсионного анализа устанавливает связь между структурой общей дисперсии и соотношением моды и медианы. Принято считать, что средняя является модулем, если отношение моды к медиане больше единицы, но не более чем на 3-8 %. Это условие является вторичным и учитывается, если γσ ≤ 23 %. Для устойчивой средней отношение моды к медиане больше единицы на 7-12 %, γσ ≤ 78 %.
Дисперсионный анализ включает также измерение дисперсии так называемых альтернативных признаков, т.е. признаков, которыми обладает не каждая единица совокупности. Дисперсия альтернативного признака равна произведению доли единиц, обладающих этим признаком, на долю единиц, не обладающих им.
При выполнении расчетов дисперсионного анализа часто используется универсальный метод расчетов как общей дисперсии, так и ее слагаемых – способ моментов:
σ2 = d2(m2 – m12);
где m1 – первый статистический момент; m2 – второй статистический момент; c и d – произвольно выбранные числа.
11. Индексы
Индекс – это комплексный показатель, регистрирующий изменение сложного явления (признака) за известный интервал времени.
Математическая суть индекса – отношение, что нуждается в обосновании знаменателя (базы) индекса. База должна отвечать следующим требованиям:
общее наименование с изучаемым показателем в исследуемом периоде;
жестко регламентированный временной уровень (план, конкретный момент времени, конкретный период времени);
База может быть простой, сложной и интегральной. Однако у сложных вариантов базы должен быть модуль (простая база). Комплексный анализ сложного явления сопряжен с получением сложных вариантов базы.
Разнообразие явлений, изучаемых статистикой, предполагает использование системы индексов, в которой выделяются индивидуальные, групповые и общие индексы. Каждый вид индексов, в свою очередь, делится на подвиды. Кроме того, в процессе анализа выделяют связки индексов, которые позволяют легко переходить от частных индексов к обобщающему в пределах вида, а также от одного вида индексов к другому.
Индивидуальные индексы характеризуют динамику простых процессов, выступающих элементами сложных явлений. Например, сложное явление «Реализация продукции» формируется такими элементами, как объем реализованной продукции в натуральном измерении, цена продажи, движение готовой продукции на складе. Из этих трех элементов цена продажи является простым, а два других – сложными. Соответственно с помощью индивидуальных индексов можно регистрировать только колебания цены продажи. Такой индекс строится по формуле
где Ц1 – изучаемый простой показатель в отчетном периоде; Ц0 – тот же показатель в базисном временном периоде.
Период колебания индивидуального индекса от 0 до 1. Эти индексы измеряются в долях единицы или в процентах.
Групповые индексы регистрируют колебания простых признаков по группе одноименных единиц совокупности или однородных явлений. Для явления «Реализация продукции» групповые индексы, как и индивидуальные, могут иметь место только для цены продаж. Это будут индексы изменения цены групп одноименных товаров, поставляемых в разные пункты, или одноименных видов продукции, реализуемых в разное время.
Групповые индексы могут быть получены из индивидуальных путем различных связок индексов. Для количественных признаков возможно суммирование (умножение) индивидуальных индексов для получения группового.
Среди групповых индексов выделяется категория субиндексов. Их расчет замыкается рамками части совокупности (генеральной совокупности).
Общие индексы дают сравнительную характеристику сложных явлений в целом, а также их частей. В рассмотренном выше явлении три сложных явления: общее – объем реализации и два формирующих его (объем реализованной продукции в натуральном измерении и движение готовой продукции).
Независимо от объема явления его сравнительная оценка (изменение в определенном интервале времени) выполняется на основе общих индексов.
Из трех рассмотренных видов индексов исходным и базисным является индивидуальный индекс, так как существуют способы и методы перехода от индивидуальных индексов к групповым и от них же к общим. Вместе с тем наиболее широкое применение в статистическом анализе имеют общие индексы.
Общие индексы делятся на две категории: индексы количества (индексы количественных явлений) и индексы качества (индексы качественных явлений). Каждая из подгрупп включает классические индексы, модификации классических индексов и неформальные индексы. Классические индексы регистрируют изменения таких сложных явлений, каждое из которых может быть получено как произведение простых элементов, его формирующих. Модификации допускают такой порядок расчета сложного признака лишь в известных границах или с известными колебаниями простых признаков. Неформальные индексы строятся для сложных явлений интегрального содержания.
12. Общие индексы количественных признаков
Классический индекс. Если признак П может быть записан как произведение простых явлений (П = mLK), то общий индекс изменения изучаемого признака П в интервале времени от 1 до 0 имеет вид
,
где m – качественный простой признак; L и K – количественные простые признаки.
Заметим, что в математической записи общего классического индекса качественные простые признаки обозначают строчными буквами, а количественные – прописными.
Сочетание количественных и качественных признаков зависит от числа признаков и в определенной мере обеспечивает тот или иной уровень глубины анализа, который возможен на базе общего индекса.
Экономическая статистика ограничивает число сомножителей при формировании общих индексов: от семи до двух. Классический вариант построения индекса позволяет перейти от агрегированной записи к дифференцированной. Дифференциации подлежат количественные признаки. При этом следует помнить, что каждому экономическому показателю (явлению) по природе его образования соответствует большее или равное число количественных признаков по отношению к качественным. Если выделено шесть или семь признаков сложного явления, то количественных признаков должно быть на два больше, чем качественных.
Правильно образованный общий индекс количества (общий индекс объема) позволяет сформировать на его основе систему агрегатных индексов.
Агрегатный индекс. Этот индекс оценивает изменение сложного явления вследствие колебания одного из простых признаков, его формирующих. Агрегатный индекс изменения явления П в результате колебания признака m записывается в виде IП(m). Запись индекса в результате колебания других признаков аналогична: IП(L) и IП(K).
Критерием корректности анализа с использованием агрегатных индексов является равенство общего индекса произведению агрегатных:
Жесткость этой связи зависит от числа признаков, от их расположения и от приема дифференцирования. Рассмотрим процедуру построения агрегатных индексов на примере наиболее агрегированного варианта записи общего индекса товарооборота:
где р – цены продаж (качественный признак); q – объем продаж (количественный признак).
Этот общий индекс может быть разложен на два агрегатных индекса: один (Ipq(p)) регистрирует изменение товарооборота pq вследствие колебаний цен; второй (Ipq(q)) – изменение общего признака товарооборота вследствие изменения объема продаж.
По содержанию общий признак товарооборота pq является количественным. Его величина в значительной мере определяется объемом продаж q. Поэтому общий индекс товарооборота является произведением двух агрегатных индексов: первый является индексом количества и регистрирует влияние количественного признака, второй – индексом качества и регистрирует влияние качественного признака. Следовательно, уравнение будет выглядеть следующим образом:
.
















