179320 (685658), страница 6
Текст из файла (страница 6)
Процедура неформального взвешивания обязательна в следующих случаях:
1. Осредняемый признак качественный, т.е. расчет его предполагает использование плановых (стандартизованных) признаков. Например, осредняемые признаки включают содержание полезного компонента в руде, цену продаж, себестоимость, производительность труда. Простые «веса» используются при расчете средних содержаний полезного компонента, себестоимости, производительности труда. Сложные «веса» необходимо применять при расчете средних цен.
2. Осредняемые признаки качественные, комплексные по содержанию и интегральные по схеме образования. Например, для цены продаж «весом» должен быть количественный признак, причем комплексный, рассчитанный как произведение одного количественного признака, связанного с осредняемым прямой или технологической связью, и одного или двух качественных признаков, связанных с количественным признаком жесткой прямой связью. Если осредняемый признак интегрального содержания, то количественный признак должен быть жестко связан с модулем осредняемого признака, а один, два или три качественных признака находиться в функциональной связи с остальной частью осредняемого признака.
3. Количественные признаки с высокой долей качества (себестоимость ГРР, выручка, запасы полезного ископаемого). Для таких показателей «вес» может быть только сложным. В его состав входят два количественных признака и до трех качественных. Количественные показатели связаны функциональной (косвенной) связью с осредняемым признаком или формируют экономический фон существования осредняемого признака. Качественные показатели должны быть стандартными или цензовыми и связанными с количественными признаками.
Если результатом формального взвешивания является модуль средней, то в результате неформального взвешивания получают устойчивую (1-й случай) и прогрессивную (2-й и 3-й случаи) средние. От уровня средней зависят многие статистические расчеты и СОП. Поэтому в статистике существует набор приемов по оценке надежности (качества) средней.
Первая группа этих приемов предполагает сопоставление устойчивой и прогрессивной средней с модулем и детерминацию (ограничение) этого отклонения в зависимости от содержания признака. Для количественных признаков отклонение средней от модуля допустимо в диапазоне от 20 до 25 % в сторону увеличения и от 10 до 15 % в сторону снижения. Для качественных признаков устойчивая средняя может отклоняться от модуля от ±3 до ±7 %; прогрессивная в сторону увеличения в пределах 5-8 %, в сторону снижения 10-12 %.
Вторая группа приемов связана с расчетом специальных показателей (моды и медианы), которые позволяют быстро и надежно оценивать качество средних и уточнять их содержание.
Мода – это наиболее часто встречающееся значение признака в изучаемой совокупности (в ряду распределения). Таким образом, мода – это значение признака с максимальной частотой. В интервальном ряду выделяется модальный интервал (интервал с максимальной частотой). Мода в пределах этого интервала определяется или приближенно (середина интервала), или точно по формуле
где XМо – начальное значение интервала, содержащего моду; iМо и fМо – величина и частота модального интервала; fМо-1 и fМо+1 – частота интервала, предшествующего и следующего за модальным.
Медиана – это численное значение признака той единицы совокупности, которая стоит в середине ранжированного ряда (возрастающего). При нечетном числе единиц совокупности медиана – значение признака у четко регистрируемой середины совокупности. При четном числе единиц медианой является средняя арифметическая значений признаков у двух серединных единиц совокупности.
В интервальном ряду сначала аналогично описанной процедуре определяется медианный интервал. В пределах этого интервала медиана рассчитывается или упрощенно (середина интервала), или по формуле
где XМе – начальное значение интервала, содержащего медиану; iМе – величина медианного интервала; f – сумма частот ряда; SМе-1 – сумма накопленных частот в интервалах, предшествующих медианному; fМе – частота медианного интервала.
Применение моды и медианы для оценки надежности (качества) средней зависит от характера ряда. Если значения моды, медианы и средней дискретного ряда совпадают, то средняя надежна и это модуль. Если мода и медиана попадают в другие уровни ряда, то возможны два случая:
мода находится в предыдущем уровне, медиана – в нижнем уровне по отношению к средней. Это означает, что мы имеем надежную прогрессивную среднюю;
мода находится в нижнем уровне, а медиана – в предыдущем. Полученная средняя не надежна.
Кроме сказанного возможно, что либо мода, либо медиана попадают в один интервал со средней. Если в один интервал со средней попадает мода, а медиана находится в предыдущем интервале, то получена надежная прогрессивная средняя. Если в один интервал со средней попадает медиана, а мода находится в нижнем интервале, то средняя не надежна.
Если мода, медиана и средняя интервального ряда попадают в один интервал, то получен модуль средней. Если мода и медиана попадают в другие уровни ряда, то возможны два случая:
мода, медиана и средняя находятся в соседних уровнях. Имеет место надежная прогрессивная средняя;
мода оказывается выше соседнего интервала2. Получена прогрессивная (стратегическая) средняя.
Если один из показателей (мода или медиана) попадает в один интервал со средней, а другой в соседний – результат аналогичен рассмотренному случаю для дискретного ряда.
9. Вариация признаков и статистические способы ее измерения
Вариацией называется наличие различий в численных значениях признака у единиц совокупности. Измерение вариации позволяет выделить стадии (уровни) изменения качества в пределах совокупности и, как следствие, вскрыть резервы для углубления качества в состоянии совокупности
Для измерения вариации важно установить базу (уровень) регистрации отклонения значений признака у единиц совокупности и содержание признака, вариация которого измеряется.
В экономической статистике для оценки процесса вариации экономических показателей можно принять две базы: модуль средней или устойчивую среднюю признака.
Содержание признака для оценки вариации (процесса) имеет большое значение, так как оно регламентирует показатели вариации для данного признака.
Показатели вариации. В экономической статистике для измерения вариации используются следующие показатели:
Размах вариации – это разность между наибольшим и наименьшим значениями признака в изучаемой совокупности. Этот показатель регистрирует доверительный интервал колебания признака в изучаемой совокупности, поэтому его применение для оценки вариации крайне ограничено.
Среднее линейное отклонение – это средняя арифметическая из абсолютных отклонений индивидуальных значений признака от его расчетной базы (модуля или устойчивой средней). Среднее линейное отклонение для первичного и вариационного рядов соответственно
Дисперсия для первичного и вариационного рядов рассчитывается по формулам
Среднее квадратическое отклонение для первичного и вариационного рядов вычисляется следующим образом:
Коэффициенты вариации от среднего линейного отклонения и среднего квадратического отклонения соответственно
Здесь
– среднее линейное отклонение; xi – значение признака i-й группы;
– среднее значение признака в исследуемой совокупности; n – число единиц совокупности; fi – число единиц i-й группы (частота или частость).
Выбор показателя вариации зависит от содержания признака. Наиболее распространенные способы оценки вариаций признаков следующие:
вариация количественных признаков – показатель среднего линейного отклонения (если размах вариации не превышает 5 % от стандартного уровня) и дисперсия;
вариация качественных признаков, стандартных по номенклатуре, – коэффициенты вариации, причем предпочтение отдается Vσ;
вариация качественных стандартизованных признаков, если они планируются, – коэффициент Vi, прочие – дисперсия;
вариация количественных признаков с высокой долей качества – дисперсия и коэффициенты вариации. Чем более качественный признак, тем более надежный результат будет получен при использовании коэффициентов вариации.
В зависимости от показателя измерения вариации последние могут использоваться для индивидуальной или сравнительной оценки вариации.
Если оценка вариации ограничена дисперсией, то возможна только сравнительная оценка вариации одного признака в разных совокупностях. Однако такая оценка вариации через дисперсию важна, так как позволяет проводить дисперсионный анализ, в процессе которого выделяется вариация признака под влиянием внешних условий.
Если вариация признака оценивается через дисперсию, то кроме сравнительного анализа одного признака допустим такой же анализ разных признаков совокупности. Эти признаки, как правило, имеют одно наименование, но рассчитываются по-разному.
Если вариация признака измеряется коэффициентами вариации, то возможна нормативная оценка вариации признака. В этом случае, расчетный уровень вариации сопоставляется с нормативом.
Область применения показателей вариации. Если среднее линейное отклонение соответствует установленному регламенту (для количественных признаков), то является показателем устойчивости средней в обычных рядах (не вариационных).
Дисперсия используется двояко: для оценки вариации признака и как инструмент проведения дисперсионного анализа. Как показатель вариации дисперсия используется для измерения колеблемости признаков одного содержания (одной природы). Кроме того, для стандартизованных признаков дисперсия позволяет установить доверительный интервал допустимого (регламентированного) колебания признака.
Дисперсионный анализ позволяет разделять комплексную причину колебания признака на две основные: внутреннюю и внешнюю по отношению к изучаемой совокупности. Способов проведения дисперсионного анализа достаточно много. Наиболее простой одновременно является базисным и основан на использовании балансовой связи между несколькими показателями дисперсии. Последняя может быть представлена в дифференцированном или агрегированном варианте. В основе перехода от агрегированного к дифференцированному описанию связи, когда число слагаемых растет, лежит дробление слагаемых по арифметической схеме (каждое слагаемое является суммой).
Среднее квадратическое отклонение, как и дисперсия, имеет двойное применение:
как характеристика устойчивости комплексных признаков с высокой долей качества. При этом выполняется сравнительный анализ устойчивости комплексных признаков (однородных по содержанию) в пределах совокупности и однородных совокупностей;
как расчетная база для получения наиболее надежных коэффициентов вариации Vσ.
Коэффициенты вариации в экономической статистике оценивают в относительном измерении устойчивость признаков и поэтому используются при сравнительном анализе различных признаков, в том числе функционально связанных.
10. Дисперсионный анализ
Виды показателей дисперсии. Процесс группировки позволяет в пределах изучаемой совокупности выделять отдельные ее части по изучаемому признаку или признаку, функционально связанному с ним. Такое разделение возможно при вторичной группировке. Если каждая из выделенных частей не меняет содержания совокупности по данному признаку, то в пределах каждой части могут быть получены частные (внутригрупповые) дисперсии. Тогда дисперсия, определяемая в пределах всей совокупности, будет общей.
Пусть
– общая средняя;
– частная (внутригрупповая) средняя; j – порядковый номер части совокупности (ее группы); 2 – общая дисперсия; 2j – внутригрупповая дисперсия; i – порядковый номер значения признака; nj – число единиц в группе. Тогда общая и внутригрупповая дисперсия соответственно
Найденные показатели дисперсии нельзя складывать, так как они разноуровневые (один по совокупности в целом, другой в пределах ее части). Поэтому частные показатели необходимо вывести на уровень совокупности, т.е. найти среднюю из частных дисперсий. Эта дисперсия получила название групповой:
















