179320 (685658), страница 8

Файл №685658 179320 (Статистическое наблюдение) 8 страница179320 (685658) страница 82016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Процедура формирования агрегатного индекса основана на том, что простые признаки, кроме регистрируемого данным индексом, остаются неизменными, а этот признак изменяет свое значение и в числителе, и в знаменателе. Такой признак получил название индексного числа. Второй элемент агрегатного индекса – индексное отношение – представляет собой совокупность значений простых признаков одного временного периода.

Вернемся к процедуре разложения общего индекса на систему агрегатных. Формируем первый индекс (индекс количества):

Выбор временного периода для признака-«веса» р диктуется правилами статистики: агрегатный индекс от количественного признака использует «вес» (качественный признак) базового периода. В записанном индексе индексным числом является q, а индексное отношение имеет вид .

Второй индекс (индекс качества)

Индексным числом в данном случае является р. Время признака-«веса» вытекает из условия построения предыдущего индекса, в котором q учтено в его предельном значении q1. Поэтому естественен его учет на этом уровне и в данном индексе. Индексное отношение имеет вид

Математическая проверка правильности построения агрегатных индексов проводится по формуле

Статистическая проверка грамотности построения агрегатных индексов основана на правиле: индексное число агрегатного индекса количества должно быть правильной дробью, оно же в индексе качества – неправильной.

В теории статистики используются следующие правила формирования системы взаимосвязанных индексов в пределах общего индекса:

1. Первым индексом в цепи взаимосвязанных индексов является агрегатный индекс количества; замыкающим – индекс качества.

2. «Весом» для количественных признаков является качественный признак базисного уровня; для качественных – количественный признак отчетного периода.

3. Удовлетворяющие первым двум правилам построения индексы удовлетворяют и уравнению связи между общим индексом и системой агрегатных.

Строгое соблюдение этих правил реализуется для классических индексов количества и качества.

В статистике существует несколько способов построения системы взаимосвязанных индексов (разложения общего индекса). Наиболее распространенными являются метод цепной подстановки и метод индивидуального учета факторов.

Метод цепной подстановки. Развернем агрегированный классический индекс товарооборота в более дифференцированный вид: Z = pq = pMk, где – индекс изменения цен; М – количественный признак объема продаж; k – признак, функционально связанный с М. Такова экономически правильная запись дифференцированной формулы товарооборота.

Соответственно общий индекс товарооборота запишется следующим образом:

.

Чтобы выполнить первое условие формирования системы взаимосвязанных индексов, необходимо запись изучаемого количественного признака Z изменить так: Z = Mkp.

Агрегатные индексы количества примут вид

;

;

,

а агрегатный индекс качества

.

Однако выполнение этого правила еще не гарантирует достаточно надежную связь между общим индексом и системой агрегатных. Это, в свою очередь, требует соблюдения ряда условий для построения развернутой (неклассической) системы агрегатных индексов:

1. В общей записи изучаемого сложного явления Z число количественных факторов должно быть либо равно числу качественных, либо превышать его хотя бы на единицу. В нашем примере это условие не выполнено.

2. Из количественных признаков выбирается тот, от которого в наибольшей степени зависит величина изучаемого признака Z. Этому признаку присваивается первый номер. Остальные количественные признаки ранжируются по мере снижения их влияния на изучаемый признак.

3. Качественные признаки «привязываются» к количественным на основе функциональной связи между ними, и исходная формула записывается так, чтобы количественные и качественные признаки чередовались; при этом последним признаком должен быть качественный.

4. При таком расположении признаков первый индекс будет обязательно индексом количества, а последний – индексом качества.

5. Запись «весов» (сложных по составу) осуществляется следующим образом: без нарушения перечня признаков не использованный ранее (в других индексах) признак записывается по базисному периоду, а использованный – по отчетному.

Таким методом характеризуется изменение сложных явлений, включающих до восьми простых признаков, причем соблюдение перечисленных выше условий обеспечивает высокую точность расчетов. Предельный дисбаланс составляет 4 % в пользу произведения агрегатных индексов, т.е. общий индекс на 4 % меньше, чем произведение агрегатных. Достаточно надежные результаты требуют учета до пяти признаков.

Следует помнить, что для этого метода очень важно правильное ранжирование количественных факторов, что связано с анализом изучаемого явления.

Хотя в рассмотренном нами примере нарушено одно из условий, правильное ранжирование факторов позволяет получить результат в пределах регламента (4 %).

Метод индивидуального учета факторов. Этот метод менее надежен, но более прост, так как формирование агрегатных индексов (независимо от их содержания) предполагает использование «весов» в одном временном периоде (базисном). Однако необходимо соблюдать следующие требования:

Соотношение признаков в записи общего, или комплексного, признака должно соблюдаться жестко: 50 % количественных, 50 % качественных; при общем числе признаков более четырех количественных признаков должно быть на один больше.

Общее число признаков не должно превышать пяти.

Пусть изучаемый признак А записывается формулой: А = mFlC. Для процедуры ранжирования количественных признаков условимся, что признак С имеет больше влияния на А, чем F. Между качественными и количественными признаками существует взаимосвязь, которая позволяет выделить их пары: Cm; Fl. Таким образом, можно записать исходную формулу в виде, удобном для составления цепи взаимосвязанных индексов: А = СmFl.

Сформируем систему агрегатных индексов:

Построение начального индекса согласно и этому методу должно удовлетворять условиям построения агрегатных индексов в пределах общего индекса. Анализ индекса IA(С) позволяет сделать вывод, что он удовлетворяет основному правилу построения агрегатных индексов по данному способу. Построение индекса IA(m) не исходит из требований классики. Оно учитывает только требования данного метода. Построение индекса IA(l) допускает отход от классики, так как это не агрегатный индекс качества, а его некоторая модификация – признаки «веса» в нем имеют не отчетный, а базисный уровень согласно данному методу.

Поскольку в данной записи имеет место отход от основного требования классики в построении цепи взаимосвязанных индексов (начальный признак – индекс количества, замыкающий – качества), то анализ по таким индексам будет не совсем точным. Неточность будет выражаться дисбалансом:

Рассмотренный метод дает достаточно надежный результат (дисбаланс 1-2 %) при трех факторах и широко применяется при внутрипроизводственном анализе (на предприятиях). Увеличение числа факторов сопряжено со значительным ростом дисбаланса: при пяти факторах до 8-12 %, при шести до 18-23 %.

Несмотря на неточность, этот метод широко используется, когда нет возможности получить информацию отчетного уровня прямым путем (не расчетным). Во всех остальных случаях более надежным является метод цепных подстановок.

Модификации классических агрегатных индексов количества и качества. Построение таких индексов рассмотрим на примере агрегатных индексов объема продаж Ipq(q) и цены продаж Ipq(p). Необходимость построения модификаций связана с невозможностью прямо получить информацию: для признака q такие сложности возникают в отчетном периоде, а для признака р – в базисном. Проделаем выкладки для модификации индекса количества. Запишем формулу индекса:

Известно, что индивидуальный индекс признака q Следовательно, Заменим q1 в формуле индекса этим произведением. Тогда

Итак, агрегатный индекс количества может быть выражен через индивидуальные индексы количественного признака. При этом агрегатный индекс является средней арифметической из индивидуальных индексов, «весом» в которой является общий признак базисного периода. Такая модификация действительно не содержит ни одного сомножителя отчетного уровня.

Проделаем аналогичные выкладки для получения модификации индекса качества. Индекс качества

.

Так как то . После подстановки запишем

Агрегатный индекс качества также может быть выражен через индивидуальные индексы качественного признака. При этом такой модификацией агрегатного индекса качества является средняя гармоническая из индивидуальных индексов, взвешенных по общему признаку отчетного периода. Видно, что в такой записи не содержится ни одного показателя базисного периода.

Полученные модификации не являются самостоятельными индексами, но лишь приемами расчета агрегатного индекса в определенных условиях. Поэтому такие модификации не должны использоваться при построении цепи взаимосвязанных индексов.

13. Абсолютные разности

Индексный анализ независимо от метода построения цепи взаимосвязанных индексов дополняется анализом абсолютных разностей.

Абсолютная разность – это разность между числителем и знаменателем индекса (общего или агрегатного). Точно так же, как существует балансовая связь между общим и агрегатными индексами, существует такая же связь и между абсолютными разностями.

Абсолютная разность по общему индексу равна сумме абсолютных разностей по агрегатным индексам. В общем виде в обозначениях рассмотренного выше примера (А = CmFl) это записывается так:

.

Это уравнение указывает на основное назначение данного анализа; именно наличие баланса абсолютных разностей убеждает в правильности выполненных расчетов. Кроме того, абсолютные разности более точно учитывают дисбаланс. В связи с этим абсолютные разности по разным общим признакам имеют разные пределы дисбаланса.

Абсолютные разности очень существенно дополняют индексный анализ по другой причине. Дело в том, что если индексный анализ всегда замкнут совокупностью (генеральной ее частью), то абсолютная разность может применяться для любых частей совокупности, даже для отдельных единиц совокупности (характерных представителей). Докажем это утверждение. Пусть формула общего индекса имеет вид

.

Если замкнуть рамки индексного анализа представителями совокупности, общий индекс преобразуется к виду

.

Это выражение непосредственно трансформируется в произведение двух индивидуальных индексов: .

Вместе с тем для отдельной единицы совокупности абсолютная разность по общему признаку может быть рассчитана, поскольку . Аналогично получим абсолютные разности вследствие изменения количественного и качественного признаков соответственно:

Характеристики

Тип файла
Документ
Размер
3,14 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6985
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}