85882 (597844), страница 5

Файл №597844 85882 (Теория и методика обучения математике) 5 страница85882 (597844) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Приемы поиска планы решения задачи.

1. Распознавание вида задачи, подведение задачи под известные Def, утверждение, правило, алгоритм. В случаи, если задача стандартная.

2. Рассуждение на основе исходного текста задачи с использованием аналитически синтетического метода.

3. рассуждение по краткой записи.

4. проведение аналогии с ранее решенными задачами и методами решения.

5. разбиение задачи на подзадачи.

6. Введение вспомогательных элементов.

Приемы дополнительной работы над задачами.

Составление и решение обратной задачи.

Решение задачи другим способом.

Исследование решения.

Проверка, практическая значимость задачи.

обобщение задачи и способы решения.

Задача: Два велосипедиста выехали навстречу друг другу из пункта А и В, расстояние между которыми = 11 км, ? = 24 км/ч

? = 20 км/ч.

одновременно с первым велосипедистом из А выбежал пес, добежав до 1- го велосипедиста, он повернул назад так он и бегал от одного к другому до их встречи.

Какое расстояние пробежал пес, если его ?= 28 км/ч.

Пери способа: арифметический, арифметически – алгебраический, алгебраический.

Решение:

S=v/t

t=S/v

v1+2=v1+v2

v1+2=44 км/ч

t=11/44=1/4 ч

S=28:1/4=7 км

При решение задач на вычисление аналитическим способом аналитико – синтетический метод применяется на тех – же решениях. Единственное различие состоит в том , что на этапе поиска решения применяется анализ в нисходящей форме.

Методика обучения решения технических задач.

Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми (сюжетными, практическими, арифметическими и т.д)

Текстовая- текст

Задача сюжетная- сюжет (реальные объекты, события, явления)

Арифметическая- математические выкладки (коллективные отношения

между значениями нескольких величин, связанные с вычислениями).

Термин текстовая задача -наиболее распространен. Текстовая задача представляет собой словесную модель ситуации, явления, события, процессы.

Задача:

Числовые значения величин (данные, известные- их должно быть не меньше двух).

некоторая система функциональных зависимостей в неявной форме.

требование или вопрос, на который надо найти ответ.

В задачи есть условие. Числовые значения величин и существующие между ними зависимости, т.е качественные и количественные характеристики объектов задачи и отношений между ними.

Величину, значение которой надо найти, называют искомой величиной, а числовое значение искомых величин, а числовое значение искомых величин- искомыми или неизвестными.

Задача: На первом складе было 135 м3 дров, на втором складе 114 м3. Ежедневно с первого склада вывозят по 7,5 м3, со второго 6,5 м3. Через солько дней на складах дров останется поровну?

Условие задачи :

1) Первый склад-135 м3

Второй склад- 114 м3.

Ежедневно с первого склада- по 7,5 м3.

со второго 6,5 м3.

Требование:

Через сколько дней на складах дров останется поровну?

Решение задачи:

135-7,5х=114-6,5х.

135-114=7,5х-6,5х

21=х

х=21

Ответ: через 21 день.

Задача: Даны три числа, сумма которых равна 100. Сумма двух из них равна 80, а первое число на 20 больше второго. Найти эти числа.

Условие задачи :

три числа: x, y, z.

сумма чисел равна 100

сумма двух из них равна 80 (1 и2, 1 и 3, 2 и 3)

первое число на 20 больше второго

Требование: 1. Найти эти числа

Решение задачи:

Ответ:

1) 2) 3) - неопределенная задача.

Лекция 5. Алгоритмы и правила

При решении стандартных задач выполняется алгоритмическая деятельность, т.к ход, последовательность и действия учащимся известны, под алгоритмом под алгоритмом понимает предписание, определяющее последовательность действий, операции, преобразовании с данными заданиями и для того чтобы решить задачу определенного типа алгоритм- неопределенное понятие, поэтому его распознавание проводится с использованием характеризующих свойств: массовость, элементарность и дискретность, шагов детерменированность, результативность.

Свойство массовости означает, что алгоритм применим для всех задач данного типа.

Элементарность проявляется в возможности разделения алгоритма на отдельные законченные операции, шаги, каждый из которых ученик может выполнить.

Детерменированность алгоритма понимается как однозначность, определенность каждого его шага.

Результативность показывает, что выполнение предписаний обязательно приводит к требуемому результату.

В школьном курсе математики вместо слова «алгоритм» часто используют термин «правило»

Правило- такое предписание, которое отличается от алгоритма, с нарушением некоторых свойств.

Логико-математический анализ алгоритмов и правил составляют из следующих действий.

а) проверка характеризующих свойств.

б) выделение последовательности операции.

в) установление связи с другими знаниями.

г) установление математических оснований, которые обычно являются общими математическими суждениями.

«Чтобы сложить две дроби с разными знаменателями надо привести их к общему знаменателю и сложить полученные дроби с одинаковыми знаменателями.»

Все свойства алгоритма выполняются, т.к правило применимо для любых двух обыкновенных дробей с разными знаменателями (массовость). В нем четко выделены 2 операции (дискретность) каждая из которой вполне определена (дискретность) и последовательное их выполнение приводит к результату в виде дроби (результативность) с помощью этого правила можно складывать дроби большего количества. Убрав в формулировке слово две. Учителю необходимо пересмотреть правило, указать порядок выполнения действия.

«Чтобы сложить две дроби с разными знаменателями надо:

1) привести их к общему знаменателю

2) сложить полученные дроби с одинаковыми знаменателями.»

Способы задания и виды алгоритмов.

Основными способами задания алгоритмов является словесное предписание в виде свободного текста, памятки, инсрукции, перечня шагов и т.п.

Образец выполнения

Алгоритмичная запись

Блок схемы

Запись на одном из математических языков программирования.

Основные виды алгоритмов: 1. линейные и разветвленные.

2.циклические и нециклические.

Рассмотренный пример «Сложение дробей с разными знаменателями» является линейным нециклическим алгоритмом, заданным способом предписания.

П-р: «Алгоритм Евклида» нахождение НОД двух чисел.

1) Разделить х на у перейти к указанию 2

2) если остаток =0 перейти к указанию 4, иначе к указанию 3.

3) присвоить х значение у, в значение остатка. Перейти к указанию 1.

4) НОД (х,у)= . перейти к указанию 5.

5) процесс окончен.

Это разветвленный циклический алгоритм, заданный способом алгоритм записи «Алгоритм решения линейных уравнений».

Это разветвленный не циклический алгоритм в виде блок-схемы. В школьном курсе математики алгоритмы и правила чаще записываются в виде и образца выполнения

Р азвитие понятия числа в курсе математики в неполной средней школе.

Различные подходы изучения чисел в курсе математики в неполной средней школе.

Методические основы ведения новых чисел.

Понятие числа относится к основным понятиям математики. На вопрос «что такое число? »нельзя дать ответ, опираясь на ранее введение понятия.

Современная математика имеет дело с различными по природе числами: натуральные N, с целыми Z, рациональные Q , действительные числа R, иррациональные J, комплексные С, гиперкомплексные К.

Понятие числа возникло на заре человеческой цивилизации в результате деятельности человека. Постепенно происходило расширение понятия числа.

Nc Z c Q C R c C c r, каждое из этих множеств является расширением предыдущего, при этом имеется в виду, что множество У является расширением множества Х, если выполняются следующее условие:

Множество Х есть собственное подмножество множества У.

Все отношения и операции для элементов множества Х определены и в множестве У, при этом их смысл совпадает с тем, который они имели в Х до расширения.

В множестве У выполнена операция, которая в Х была не выполнима, или не всегда выполнима.

Расширение У является минимальным из всех возможных удовлетворяющим первым трем требованиям.

Первое расширение понятия числа происходит в 5-6 классах, к концу 6-го класса формулируется понятие рационального числа, дальнейшее расширение в 7-9 и далее в 10-11 классах, причем основные положения и представление о числе у учащихся сложились в 5-6 классах.

С точки зрения чистой алгебры естественный ряд обобщений идет по пути:

(1) (2) (3) (4) и на алгебраических числах заканчивается.

В школе рассмотрение понятия числа идет по пути (1) (5) (3) (7) (8)

При разработке программы для школы были предложения идти по пути (1) (2) (3), после того как ученики изучили целые числа должны перейти к понятию неотрицательного числа.

В начале 5-го класса ученики еще не готовы к введению понятия отрицательного числа, они не поймут почему из меньшего числа вычесть больше, а понятие дроби более естественно, оно связано с повседневной жизнью, поэтому выбором путь рассмотрения числа (1) (5) (3) (7) (8) от (7) (8) оставили на факультативные занятия.

А.А. Столяр предлагает показать учащимся, что расширение понятия числа происходит из потребности практики и в связи с этим предлагает следующую схему:

Введение дробных чисел возможно начиная с обыкновенных и десятичных дробей, необходимо исходит из начального освоения. Для первоначального усвоения обыкновенной дроби легче исходя из возраста их жизни, а затем десятичные.

Введение нового числа обычно опирается на жизненный опыт учащихся, необходима мотивировка, так введение дробных чисел связывает с измерением, делением на части, мотивировка может быть алгебраической, практической (вводятся индуктивным методом).

Методика введения новых чисел в школе.

Какие дроби изучали раньше обыкновенные или десятичные?

В большинстве случаев в школе принято изучать обыкновенные дроби, однако есть случаи когда первыми изучают десятичные дроби:

1) десятичные дроби имеют большую практическую ценность.

2) производить действия над десятичными дробями легче

3) теорию о десятичных дробях можно построить, используя понятие обыкновенной дроби, расширяя десятичную нумерацию меньшую единицы.

Доводы против-й стороны:

не следует отступать от исторического развития числа.

Не следует нарушать логику, обыкновенная дробь родовое понятие, а десятичная дробь- видовое, трудно обосновать действия над десятичными дробями без обыкновенной дроби.

Учащиеся не оценят легкость действий над десятичными дробями не познавая трудности при действии над обыкновенными.

Теоретическое значение обыкновенных дробей, выше вся алгебра построена на обыкновенных дробях.

Нумерация дробных чисел.

В нумерации натуральных и дробных чисел есть различия:

1. Натуральное число имеет единственное название и единственное обозначение.

Характеристики

Тип файла
Документ
Размер
6,92 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6508
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее