85882 (597844), страница 2

Файл №597844 85882 (Теория и методика обучения математике) 2 страница85882 (597844) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Для представления характерно переход к его высшей ступени познания то есть к образованию понятий. С точки зрения формальной логики мышление характеризуется следующими основными формами:

понятие

умозаключение

суждение.

Для понятия характерным является выделение свойств, при этом общее свойство некоторого объекта могут быть как отличиями так и неотличительными свойствами.

Общее свойства могут быть отличительными для данного объекта если оно отражает его так называемые существенные свойства, которые могут быть его признаками.

Признак является основным для некоторого объекта, если данный признак принадлежит всем объектам рассматриваемого класса.

Признак называется противоречивым, если он не принадлежит не одному объекту рассматриваемого класса.

Признак называется отдельным, если он принадлежит лишь некоторым объектам рассматриваемого класса.

Отношение независимости. Свойства а и б называются независимыми, если объектом некоторого множества принадлежат оба свойства одновременно и отдельно друг от друга.

Отношение необходимости и достаточности. Каждое из двух свойств является необходимым и достаточным условием по отношению друг к другу, если объекту этого множества принадлежат одновременно только эти свойства, при этом одно свойство называется необходимым если существуют объекты имеющие одно из этих свойств, в противном случае рассматривается достаточность.

Отношение несовместимости. Свойства называются несовместимыми, если объект некоторого множества может содержать только свойства одного класса.

Основными характеристиками понятия является:

содержание понятия

объем

связь и отношения данного понятия с другими

Под содержанием понятия понимают совокупность основных признаков существующих характеристик (классов) объекта (явления), возникающих со знанием человека с помощью данного понятия. (для треугольника, прямоугольника, окружности и т.д)

Объем понятия - это количество объектов охватываемых в данном понятии (квадрат, прямоугольник, трапеция, ромб)

Логические операции используемые при работе с понятиями:

ограничение- переход от понятия большего… к понятию меньшего… (от параллелограмма к ромбу)

обобщение- переход от меньшего к большему …, при этом общие понятия называются родовым понятием, менее общее видовым (призма родовое понятие, прямая призма- видовое)

Что значит определить понятие?

Определение понятие- это логическая операция при помощи которой рассказывается содержание вводимого понятия через перечисление существенных признаков.

Существенные признаки понятия- это признаки которые необходимы для характеристики данного объекта при этом возможно, что лишь 1 признак является необходимым, а все ….. , чтобы отличить объекты данного рода от других. Выбор существенного признака для определения объекта может оказаться многозначным.

Различают реальные и номинальные определения.

Реальные определения: отображают существенные признаки предмета и имеют цели отличить определяемые предметы от всех других предметов путем указания его отличительных признаков. Номинальные определения объясняют значение слова и термины обозначают данный объект

Конъюнктивные и дедуктивные. Конъюнкция, когда одно истинно.

Дизъюнкция, либо ложь, либо истина.

Конструктивное определение, определение в котором указывается способ образования объекта (конус, шар, цилиндр).

Рекурсивное определение- это определение в котором указывается некоторые базисные объекты, некоторого класса и правила позволяющие получить новые объекты этого же класса.

Остенсивное - это определение значение слов путем непосредственного показа, демонстрации предметов, которое обозначается этими словами.

Определение через отрицание- это когда отрицаются известные определения, чтобы получить новое определение (натуральное, отрицательное, рациональное, иррациональное)

Определение через абстракцию- это, когда определение того или иного объекта через другой вид невозможно либо трудно осуществимо (множество, число, величина, точка).

Аксиоматический- это когда определение понятие дается через аксиому (прямая, точка, плоскость)

Требования к определениям

Определение должно быть соразмерным, то есть ……… определяемого и определяющегося понятия должны быть равные.

Н-р: квадратом наз-ся прямоугольный четырехугольник.

2. Определение не должно включать в себя порочного круга ( тавтология ) то есть в качестве определяющего понятия, не должно браться понятие, которое само определяется с помощью определяемого понятия.

Н-р: прямой угол наз-ся угол равный 90 градусов.

3. Определение не должно бать отицающим, Определение должно указывать признаки принадлежащие понятию, а не признаки которые оно не должно иметь.

Н-р: параллелограмм- это не трапеция.

4. Определение должно быть ясным, т.е Определение не должно быть двухсмысловым или содержать метафологические выражения.

Н-р: подобные фигуры должны иметь одинаковую форму.

Нарушение этих требований к следующим ошибкам:

Ошибки связанные с неполным указанием родового понятия. Н-р: квадрат равносторонний прямоугольник.

В определении указывается род понятия, который для определяемого понятия не является не родом, не видом. Н-р: хорда это прямая соединения 1 точек окружности.

Тавтология в определении понятий, т.е предмет определяется через самого себя.

Ошибки связанные с неправильным указанием родового отличия:

а) Указываются не все требуемые видовые отличия. (угол образованный хордами)

б) избыток видовых отличий (параллелограмм- это прямоугольник, у которого противоположные стороны равны или параллельны)

5. Ошибки, связанные с пропуском слов (прямые лежащие в одной плоскости и не имеющие одной общей точки называются параллельными – 2 пропущено)

Понятие в школьном курсе математики представляется по группам:

понятие аналогии, которое является житейским представлением и включает донаучные понятия.

Понятие дается без определения.

Понятие дается через определения.

Понятие дается более расплывчатым, а затем более конкретизируется

Д/З. «Лабораторная работа» Лященко

Математические суждения.

виды математических суждений

логическая структура, теоремы. Виды теорем.

свойства и признак.

Суждением называется такая форма мышления, которая устанавливает связи между понятиями между объектами, охватываемые этими понятиями.

Суждения, правильно отображающие эти объективно существующие зависимости между вещами называется истинными, в противном случае ложные. Суждения имеют свою языковую оболочку в предложениях. Однако не всякое предложение является суждением, характерные признакам суждения является обязательное наличие истинности или ложности, выражающем его предложение.

Обычно математические суждение формулируется в виде математических предложений.

К математическим предложениям относятся: теоремы и аксиомы. Некоторые определения тоже относят к математическим предложениям.

К математическим предложениям относят уравнение неравенство, тождество и др.

Для выражения тех или иных научных суждений и для выражения логической структуры операции над ними используется язык математической логики, где используется термин высказывания близкий к термину суждений. Над высказываниями используются логические операции конъюнкция, дизъюнкция, и т. д..

Основными видами математических суждений являются: аксиомы, постулаты, теоремы.

Аксиома (от греческого то, что приемлема) - предложение, принимаемое без доказательства его истинность допускается.

В аксиомах высказываются утверждения о свойствах основных неопределяемых понятиях некоторые теории к системе аксиом предлагаются требования независимости, непротиворечивости, полноты.

Постулат (от лат. требование) – это предложение в котором выражаются некоторое требование (условие) к которому должно удовлетворять некоторое понятие или некоторого отношения между понятиями.

Теорема (от греч. рассматриваю, зрелище) – математическое предположение, истинность которого устанавливается по средствам доказательства (рассуждения).

2.В любой теореме можно выделить разъяснительную часть (Р), условие (А), заключение (В).

Пример: В теореме «если две прямые // 3-й, то они // между собой».

Р: три прямые

А: 2 // 3-й

В: 3 прямые // между собой

Любую теорему на языке логики можно записать так Р/А В или А В.

Теорема имеющая одно условие называется простой.

Если имеется несколько условий, то называется теорема сложной.

П-р: сложной теоремой

1) если 2 // прямые пересечены третьей, то накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов (А В1 В2)

2) если диагональ четырехугольника точкой пересечения делится пополам, то эта фигура ромб (А1 А2 В).

Каждая сложная теорема может быть предложена в виде нескольких простых.

Для словесной формулировки теорем используется условное (со словами или … то) и категорическое (без этих слов)

Условная формы формулировки теорем отражает ее структуру и импликация высказываний из А В.

Условная формы формулировки теорем удобна для изучения в ней после слов если, дается условие теоремы то, ее заключение.

П-р: 1) Средняя линия треугольника // основанию (категорическая форма)

2) Если диагонали параллелограмма равны, то он является прямоугольником ( условная форма)

3) Вертикальные углы равны (категорическая форма)

4) Если два угла вертикальные, то они равны (условная форма).

С любой теоремой связаны еще 3 теоремы.

1. А В- прямая

2. В А- обратная

3. - противоположная к первой

4. - контропозитивная.

1 2 пары эквивалентных

3 4 теорем.

П-р: 1) Если четырехугольник параллелограмм, то его диагонали пересекаясь делятся пополам (А В- истина)

2) Если в четырехугольнике диагонали пересекаясь делятся пополам, то этот четырехугольник параллелограмм (В А- истина).

3) Если четырехугольник не параллелограмм, то его диагонали пересекаясь не делятся пополам ( истина)

4) Если в четырехугольнике диагонали пересекаясь не делятся пополам, то этот четырехугольник не является параллелограммом ( истина).

Отметим важные случаи простых и сложных теорем.

Следствие- это теорема, легко доказываемая с помощью одной теоремы.

Лемма- вспомогательная теорема представляющая интерес, только как ступень к доказательству другой теоремы.

Необходимое и достаточное условие.

Это теорема объединяющая в одной формулировке с использованием слов необходимо и достаточно прямую и обратную теорему.

А В

-Теорема существования- это теорема, в которой отсутствуют условие и заключение, но утверждается существование какого-либо объекта, обладающего определенными свойствами ( Н-р: теорема существования параллельных прямых).

- Теорема единственности- эта теорема в которой нет условия и заключения, но утрачивается единственность какого-либо объекта, обладающего какими-то свойствами (Н-р: теорема единственности перпендикуляра к прямой проходящего через данную точку).

- Теорема тождества, теорема формула- это теоремы, выраженные языком математических символов.

Некоторые теоремы отражают свойства объекта (эти понятия), а некоторые его признаки.

Свойства понятия- это то что можем сказать о данном понятие всесторонне рассматривая его.

Признак понятия- это те показатели, по которым можно узнать данное понятие.

Отличить теорему выражающая свойство понятия от теоремы, выражающей его признаки помогает условная формы теоремы, если об объекте идет речь в условии, то это свойство понятия, а если в заключении, то признак, причем объект в формулировке встречается один раз.

П-р: Теорема: «Вокруг любого прямоугольника можно описать окружность.»- это свойство прямоугольника.

Характеристики

Тип файла
Документ
Размер
6,92 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6461
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее