85868 (589890), страница 6

Файл №589890 85868 (Теореми Чеви і Менелая та їх застосування) 6 страница85868 (589890) страница 62016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Підставив в цю рівність знайдені вище значення та прийняв до уваги, що в силу теореми Чеви , одержуємо:

.

Площа трикутника буде найбільшою при мінімальному значенні . Проведемо оцінку цього добутку.

Скористаємося нерівністю нерівність :

,

при цьому рівність має місце тоді й тільки тоді, коли .

Отже, шукана точка – точка перетину медіан трикутника , для якої .

Задача 3.4. Знайти в трикутнику таку точку , щоб добуток мав найбільшу величину ( – точки перетину прямих зі сторонами ).

Розв’язок.

Проведемо медіани трикутника , які перетинаються в точці . Оскільки середнє геометричне двох величин не більше їх середнього арифметичного, то

, , .

Піднесемо кожну нерівність до квадрата та перемножимо:

Згідно з теоремою Чеви маємо

.

Отже,

.

Нерівність перетворюється в рівність у випадку збігу основ прямих Чеви з серединами відповідних сторін, отже, в цьому випадку добуток має найбільшу величину , де – сторони трикутника.Отже, шуканою точкою є точка перетину медіан трикутника.

Задача 3.5. Прямі перетинають сторони трикутника (або їхні продовження) у точках . Довести, що:

а) прямі, що проходять через середини сторін паралельно прямим , перетинаються в одній точці;

б) прямі, що з'єднують середини сторін із серединами відрізків , перетинаються в одній точці.

Доведення.

Нехай – середини сторін . Розглянуті прямі проходять через вершини трикутника , при цьому в задачі а) вони ділять його сторони в таких же відношеннях, у яких прямі ділять сторони трикутника , а в задачі б) – вони ділять їх у зворотних відношеннях. Залишається скористатись теоремою Чеви.

Задача 3.6. На сторонах трикутника взяті точки так, що відрізки перетинаються в одній точці. Прямі і перетинають пряму, що проходить через вершину паралельно стороні , в точках і відповідно. Довести, що .

Доведення.

Оскільки і , то

Тому

Задача 3.7. а) Нехай – довільні кути, при цьому сума будь-яких двох з них менше 180. На сторонах трикутника зовнішнім чином побудовані трикутники , що мають при вершинах кути . Довести, що прямі перетинаються в одній точці.

б) довести аналогічне твердження для трикутників, побудованих на сторонах трикутника внутрішнім чином.

Доведення.

Нехай прямі перетинають прямі в точках .

Якщо і , то

Останній вираз дорівнює у всіх випадках.

Аналогічно записуються вирази для і . Перемножуємо всі вирази і залишається скористатися теоремою Чеви.

Задача 3.8. Прямі перетинають прямі в точках відповідно. Точки обрані на прямих так, що

, , .

Довести, що прямі також перетинаються в одній точці (або паралельні). Такі точці і називають ізотомічно спряженими відносно трикутника .

Доведення очевидним чином випливає з теореми Чеви.

Задача 3.9. На сторонах трикутника взяті точки , при цьому прямі перетинаються в одній точці . Довести, що прямі

симетричні цим прямим відносно відповідних бісектрис, також перетинаються в одній точці . Такі точки і називають ізогонально спряженими відносно трикутника .

Доведення.

Можна вважати, що точки лежать на сторонах трикутника .

Згідно з теоремою Чеви в формі синусів

Оскільки прямі симетричні прямим відносно бісектрис, то , і т.д., тому

Отже,

,

тобто прямі перетинаються в одній точці.

Задачі для самостійної роботи

Задача 3.10. Протилежні сторони опуклого шестикутника попарно паралельні. Довести, що прямі, які з'єднують середини протилежних сторін, перетинаються в одній точці.

Доведення

Нехай діагоналі і даного шестикутника перетинаються в точці ; і – середини сторін і . Оскільки - трапеція, відрізок проходить через точку . Згідно з теоремою синусів

, .

Оскільки і , то .

Аналогічні співвідношення можна записати і для відрізків, які з'єднують середини двох інших пар протилежних сторін. Перемножуючи ці співвідношення, одержуємо необхідне.

Задача 3.11. Через точки і , що лежать на колі, проведено дотичні, які перетина-ються в точці . На дузі взяті точки і . Прямі і перетинаються в точці , і – у точці . Довести, що пряма проходить через точку .

Доведення.

Згідно з теоремою Чеви у формі синусів

Але .

Тому .

З цього випливає, що точки лежать на одній прямій, оскільки функція монотонна по :

Задача 3.12. а) На сторонах рівнобедреного трикутника з основою взяті точки так, що прямі перетинаються в одній точці. Довести, що

б) В середині рівнобедреного трикутника з основою взяті точки і так, що і . Довести, що точки лежать на одній прямій.

Доведення.

а) Згідно з теоремою Чеви

,

а по теоремі синусів

Підставляючи ці чотири рівності в попередню рівність, і враховуючи, що , одержуємо необхідне.

б) Позначимо точки перетину прямих і з основою через і . Потрібно довести, що . З а) випливає, що , тобто .

Задача 3.13. У трикутнику проведені бісектриси . Бісектриси перетинають відрізки та в точках . Довести, що .

Доведення.

Нехай відрізки і перетинають сторону в точках і . Тоді

Якщо – точка перетину бісектрис трикутника , то

,

отже,

.

Помітивши, що , і проводячи аналогічні обчислення для , одержимо .

Оскільки , то .

Задача 3.14. На сторонах трикутника взяті точки , при цьому перетинаються в одній точці. Довести, що .

Доведення

Нехай . Тоді

Згідно з теоремою Чеви

,

тобто .

Крім того,

Отже, .

Задача 3.15. На сторонах трикутника у зовнішню сторону побудовані квадрати. – середини протилежних сторін квадратів, побудованих на відповідно. Довести, що прямі перетинаються в одній точці.

Доведення.

Нехай – точки перетину прямих зі сторонами відповідно.

Відношення дорівнює відношенню висот, які опущено з точок та на сторону , тобто дорівнює відношенню .

Далі,

,

де .

Аналогічно,

, .

Перемножуючи ці рівності, маємо

.

Згідно з теоремою Чеви прямі перетинаються в одній точці.

Задача 3.16. Нехай з точки , яка взята зовні кола, проведені дві дотичні і

до кола та дві січні, і нехай

та

– точки перетину кола з першою січною, а точки

та

– з другою. Тоді прямі

і

перетинаються в одній точці.

Доведення.

Застосуємо теорему Чеви до трикутника . Прямі

і

перетинаються в одній точці, якщо виконується рівність

(*)

Всі кути, що фігурують в останньому співвідношенні, – вписані в задане коло; синуси цих кутів пропорційні довжинам хорд, що стягаються ними (наприклад, , де

– радіус кола).Тому рівність (*) еквівалентна такій рівності:

(**)

Покажемо, що (**) насправді виконується. З подоби трикутників й

одержуємо

. З подоби трикутників

і

маємо

, і нарешті, з подоби трикутників

і

знаходимо

.

Перемножуючи останні три рівності, маємо (*)

.

Задача 3.17. Трикутник вписано в трикутник

: вершини

лежать на сторонах

відповідно. Довести, що якщо прямі, які проведені через вершини трикутника

перпендикулярно до відповідних сторін трикутника

, перетинаються в одній точці, то прямі, які проведені через вершини трикутника

перпендикулярно до відповідних сторін трикутника

перетинаються в одній точці.

Доведення.

Нехай прямі, які проходять через вершини трикутника перпендикулярно до відповідних сторін трикутника

, перетинаються в точці

.

Оскільки точки лежать на колі, побудованому на відрізку

як на діаметрі, то

. Опустимо з точки

перпендикуляр

на пряму

. Оскільки

, то

, тобто пряма

симетрична прямій

відносно бісектриси кута

.

Аналогічні міркування для інших кутів показують, що перпендикуляри , які опущені з вершин трикутника

на сторони трикутника

симетричні прямим

відносно бісектрис трикутника

. Згідно з задачею 3.9 прямі

перетинають в одній точці.

Задача 3.18 (теорема Ван Обеля). На сторонах трикутника

взято точки

, так що прямі

перетинаються в одній точці. Довести, що

.

Доведення.

Нехай прямі перетинають пряму, яка проходить через точку

паралельно прямій

, в точках

і

.

Оскільки трикутник подібний до трикутника

, трикутник

подібний до трикутника

за першою ознакою подібності трикутників, то

;

. Додавши ці рівності і, враховуючи, що

, одержуємо:

.

Далі, трикутник подібний до трикутника

і трикутник

подібний до трикутника

.

Тому ;

.

Звідси випливає, що . З цієї рівності і рівності

безпосередньо випливає, що

.

Задача 3.19 Задано трикутник . Довести, що чевіани

, які ділять його периметр навпіл, перетинаються в одній точці.

Характеристики

Тип файла
Документ
Размер
57,69 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее