85868 (589890)

Файл №589890 85868 (Теореми Чеви і Менелая та їх застосування)85868 (589890)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Міністерство освіти і науки України

Дніпропетровський національний університет

Механіко-математичний факультет

Кафедра математичного аналізу


ДИПЛОМНА РОБОТА БАКАЛАВРА

ТЕОРЕМИ ЧЕВИ І МЕНЕЛАЯ ТА ЇХ ЗАСТОСУВАННЯ

Виконавець Керівник роботи

студентка групи ММ-01-1 к.ф.-м.н., доцент

Бондаренко Н.С. Поляков О.В.

Допускається до захисту

Завідувач кафедрою Рецензент

доктор фіз.-мат. наук, професор к.ф.-м.н., доцент

Бабенко В.Ф. Великін В.Л.

м. Дніпропетровськ

2006 р.

РЕФЕРАТ

Дипломна робота містить 87 стор., 54 рис., 20 джерел.

Обєктом дослідження є теореми Чеви та Менелая на площині та в просторі.

Мета роботи – вивчення теорем Чеви та Менелая на площині та в просторі, доведення нетривіальних наслідків цих теорем та розв’язання задач двома способами: традиційним і за допомогою теорем Чеви та Менелая.

Одержані висновки та їх новизна – теорема Менелая дозволяє знаходити відношення відрізків, а також доводити належність трьох точок одній прямій. Теореми Чеви та їх наслідки використовується при розв’язуванні задач про трійки прямих, що проходять через одну точку, а також при доведенні теорем про перетин трійок прямих в одній точці. Розглянуто аналоги теорем Чеви та Менелая в просторі. В дипломній роботі розв’язано 50 задач.

Результати досліджень можуть бути застосовані при викладанні теми “Теореми Чеви та Менелая” в математичних класах середніх шкіл, гімназіях та ліцеях, при позакласній роботі з учнями (на заняттях математичних гуртків, при проведенні математичних олімпіад, для індивідуальної роботи з найбільш здатними учнями).

Перелік ключових слів: ТЕОРЕМА ЧЕВИ, ТЕОРЕМА МЕНЕЛАЯ, ТРИКУТНИК, ТЕТРАЕДР, ТОЧКА, ПРЯМА, СІЧНА, ВІДРІЗОК.


ANNOTATION

This degree thesis of the 5th year student (DNU, Faculty of Mechanics and Mathematics, Department of Mathematical Analysis) deals with Cheva’s and Menelay’s theorems. The work is interesting for the students and post-graduates students of mathematical specialties.


Bibliography: 20.


ЗМІСТ

ВСТУП

РОЗДІЛ 1. Теорема Менелая для трикутника

    1. Орієнтовані відрізки

    2. Теорема Менелая

    3. Теореми Дезарга, Паппа, Паскаля, Гаусса

    4. Застосування теореми Менелая для розв’язання задач

РОЗДІЛ 2. Теорема Менелая для тетраедра

РОЗДІЛ 3. Теореми Чеви для трикутника та тетраедра. Теорема Чеви в формі синусів

3.1 Теореми Чеви для трикутника, тетраедра, в формі синусів

3.2 Застосування теорем Чеви для розв’язання задач

РОЗДІЛ 4. Теореми Чеви та Менелая на площині

ВИСНОВКИ

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

ВСТУП

Геометрія починається з трикутника. Якщо взяти шкільний підручник з геометрії, то ми побачимо, що перші змістовні теореми стосуються саме трикутника. Все попереднє – лише аксіоми, означення або найпростіші з них наслідки. На початку свого виникнення планіметрія була “геометрією трикутника”. “Геометрія трикутника” може пишатися теоремами, які носять ім’я Ейлера, Торрічеллі, Лейбниця. На рубежі 19-20 століть завдяки великій кількості робіт, присвячених трикутнику, був створений цілий новий розділ планіметрії – “Нова геометрія трикутника”. Багато з цих робіт зараз виглядають малоцікавими, недосконалими; термінологія, яка використовувалась в них майже забута й зустрічається тільки в енциклопедіях. Але деякі теореми “Нової геометрії” продовжують жити й досі. Двом таким теоремам – Чеви та Менелая – присвячена дипломна робота.

Теореми Чеви та Менелая можна назвати “двоїстими” теоремами: вони схоже формулюються й доводяться, вони взаємозамінюються при розв’язанні задач. Теореми Чеви та Менелая корисні у випадках, коли необхідно “з’ясувати відношення” між точками та прямими, – наприклад, довести, що будь-які три прямі перетинаються в одній точці, три точки лежать на одній прямій та ін.

Теореми Чеви та Менелая не входять в основний курс шкільної геометрії, між тим вони прості, цікаві й застосовуються при розв’язанні досить складних задач.

Дипломна робота присвячена розробці методики викладання теми “Теореми Чеви та Менелая та їх застосування”.

Робота складається із вступу, 4 розділів, висновків та списку використаної літератури. Кожен розділ побудовано за такою структурою. На початку розділу наводиться необхідний теоретичний матеріал, потім викладено задачі з докладним розв’язанням, а наприкінці наведено задачі для самостійної роботи з розв’язанням та відповідями.

В першому розділі роботи “Теорема Менелая для трикутника” сформульовано й доведено теорему Менелая для трикутника, наведено нетривіальні приклади використання теореми Менелая (доведено теореми Дезарга, Паппа, Паскаля, Гаусса), продемонстровано ефективність використання теореми на приклади розв’язання задач двома способами: традиційним і за допомогою теореми Менелая.

В другому розділі “Теорема Менелая для тетраедра” сформульовано й доведено аналог теореми Менелая в просторі, наведено приклади розв’язання складних стереометричних задач.

В третьому розділі “Теореми Чеви для трикутника та тетраедра. Теорема Чеви в формі синусів” сформульовані теореми Чеви та наслідки з них, наведено розв’язані задачі.

В четвертому розділі “Теореми Чеви та Менелая для площини” наведено інший підхід до формулювання теорем Чеви та Менелая.

Всього в роботі розв’язано 50 задач.

Дипломна робота може бути використана викладачами ліцеїв та гімназій при викладанні спеціальних курсів, а також при підготовці учнів до олімпіад з математики.


РОЗДІЛ 1

ТЕОРЕМА МЕНЕЛАЯ ДЛЯ ТРИКУТНИКА

1.1 Орієнтовані відрізки

Нехай на прямій задані відрізки та . Розглянемо вектори та (див. рис. 1). Зі шкільного курсу геометрії відомо, що існує таке число , що . Якщо , то вектори називають однаково спрямованими, а якщо , то говорять , що вектори протилежно спрямовані (див. рис. 1.1а та 1.1б відповідно).

а) б)

Рис. 1.1

При цьому відрізки та ми будемо називати однаково спрямованими, якщо і протилежно спрямованими, якщо . Саме число будемо називати відношенням орієнтованих відрізків (при це відношення є просто відношенням довжин відрізків, а при – відношенням довжин, взяте зі знаком мінус).

В подальшому всі відношення виду будемо розуміти як відношення орієнтованих відрізків.

Якщо відрізки і лежать не на одній прямій, а на паралельних прямих, то також можна говорити про однаково і протилежно орієнтовані відрізки і їхні відношення (див. рис. 1.2).

Рис. 1.2

Н априклад, нехай

і – точки площини, а і – перпендикуляри, опущені з цих точок на деяку пряму (див. рис. 1.3).

Рис. 1.3

Тоді, якщо точки і лежать по одну сторону від прямої , то відрізки й орієнтовані однаково (див. рис. 1.3а), а якщо по різні сторони – протилежно (див. рис. 1.3б), при цьому в обох випадках .

Зазначемо такі важливі властивості відношень:

1) 2) .

Нехай тепер на прямій задана ще третя точка – . На рисунку 1.4 показано, якими можуть бути відношення в залежності від положення точки на прямій . Так, якщо лежить на відрізку , то ; якщо точка лежить ліворуч від точки , то ; якщо точка лежить праворуч від точки , то .

Отже, задаючи відношення орієнтованих відрізків ми однозначно визначаємо положення точки на прямій .


Рис. 1.4

Зауваження. Точки , для якої , не має на прямій (можна приєднати до прямої нескінчено удалену точку і вважати, що саме для неї ). Слід зазначити, що просте відношення довжин відрізків неоднозначно задає точку на прямій – таких точок, як правило, дві (за виключенням середини відрізка , для якої ).

1.2 Теорема Менелая

Теорема Менелая дійшла до нас в арабському перекладі книги «Сферика» грецького математика та астронома Менелая Олександрійського (І-ІІ століття нашої ери). Теорема Менелая дозволяє в деяких випадках знаходити відношення відрізків, а також доводити належність трьох точок одній прямій.

Теорема Менелая. Нехай задано трикутник і три точки на прямих і відповідно. Точки лежать на одній прямій тоді і тільки тоді, коли

(1.1)

Зауваження. Іноді добуток відношень в теоремі Менелая записують так:

Тут всі відношення, що перемножуються – це відношення орієнтованих відрізків .

Рис. 1.5

Доведення.

Необхідність. Нехай пряма перетинає прямі та в точках і відповідно (див. рис. 1.5) і – перпендикуляри, які опущено з точок на пряму . Як було доведено раніше,

.

Перемножаючи записані відношення, маємо

.

Достатність. Проведемо пряму . Ми повинні довести, що ця пряма перетинає в точці . Насамперед доведемо, що дійсно перетинає . Припустимо, що паралельна (див. рис. 1.6). Але тоді

Звідси та з рівності (1.1) випливає , що неможливо.

Нехай – точка перетину прямих та . По вже доведеному

Характеристики

Тип файла
Документ
Размер
57,69 Mb
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее