Теплопередача (Исаченко В. П. Осипова В. А. А. Сукомел С.) (555295), страница 11
Текст из файла (страница 11)
При этих условннх теипература вдоль линна теплового патоке будет измеиятьси по линейному закону (рис. 2-17). Г! При заданной температуре у основания ребра Д и при температуре вершины ребра, близкой к температуре окружающей среды ! ., в силу. одномерности задачи для любого сечения ребра можно записать: Рис.
2-17. Ссчеиие Ребра и иимального кеса. ! — г. = — „(1,— ! ), (2-99) где х — расстояние па оси ребра от его вершины; й — полная высота ребра. Рассмотрим элемент поверхности ребра на расстоянии х. Пусть этот участок поверхности образует с осью ребра угол и. Если плотность теплоиого потока вдоль оси ребра ранна д, то через рассматриваемый элемент поверхности ребра ова будет равна Е в!и!с (рнс. 2-17). Т!ри этом должно быть справедливо соотношение дз!пм=п(! — 1„,), и ~и (2-100) де)пр= — — л(1,— ! ).
Ь Из равенства (2-!00) следует, по угол тр является функдией только х: в, зшр=фх. !2.100) Контур ребра, найденный указанным методом, представляет собой дугу окружности с радиусом г, так как з!пф-к/г. Иэ уравнений (2-100') следует, что гй Ей!пбь Доказано, что такой профиль ребра. 5? (200!1 образованный дугамн окружности, обладает минимальной массой. Такое ребро и ребро треугольного сечения по массе отличаютгл очень малс. По технологическая причинам проше изготовить ребра треугольнога профиля, поэтому на практике они используются чаще, чем ребра, образованные лугой окружности. Ребро треугольнагр и трзпе) — хт — 1 — б,' ц и е в н л н о г о с е ч е н и я.
В практике иаш- ли широкое применение прямые ребра как . Р;.~;Рг;;-,':;с,'г) греугольнагосечеиия с острой вершиной,так ,ч ч"ф.бмф; и с усеченной вершиной — трапециевидные. 777 ' 'Яб фб Пусть заданы размеры трапециевидного РебРа (рнс. 2-18) и избыточная температура бл у его основания. За начало координат Рв«.
2-)8. пепе»ос тез»атм че аслесообразно принять вершину треугильгез прямее ребра шзаеаиевка- ника, направив ось х вдоль оси симметрии ного сеченая. ребра Прн этом веитор плотности теплово- го потока 4 будет направлен в сторону, про-. тивоположну|о положительному направлению оси х (Л. 124). Для такого ребра площадь иоперечиого сечения 1 будет функцией только координаты х: (=18=2(х(2 Р. (а) Количество теплоты, которое будет отдаваться в окружаюп(ую среду с элемента ребра бх, будет равно: б~д) — я» 7)=аиббх', (Лз Л (б) где а -- коэффициент теплоотдачи на поверхности ребра; и — периметр сечения ребра на расстоянии х, который можно выразить как я=21; л(х'=г(х/соз и.
Произведя дифференцирование выражения (б) с учетом соотношения (а), получим: —,+ — — — — В=О. ла ! ю (в) я»* » я» х лиат После введения новой переменной х=(а(Лз)п6)х уравнение (в) приобретает вид: и'а ! яе —,+ — — 0=0. З» + з яг Дифференцвальноеуравнепие (2-!01) есть модифицированное уравнение Бесселя, решение которого имеет вид: 8 С 1»(2У7)+ СаКе(2) "а ) (2-10») где !з и Ке — модифицированные функции Бесселя первого и второго рода. Постовнные С~ н Ст в уравнении !(2-102) находятся из граничных условий, которые для рассматриваемого случая запишутся так: при х=хг имеет место 6=-6» Если пРенебРечь потеРЯми тепла с тоРца РебРа, то пРи х=хз имеем 6=67 н (бб(бх)„=0. После определения постоянных Сг и Сз получим: лля текушей температуры в ребре 8 ), (7У») К,(2Уг,)+),(2)'х,!К,(21' ) ' 7, (2 У»,) К, (2 Уж) + ), (2,) К, (г Ух)Л( для температуры иа конце ребра <,<2Ум) К,(2Ум)+<,(2У.) К,(2У*,) '<,<грл)К,<2Ум)+<,(2Ум)К.<2Ул) ' Тепловой поток можно определить по закону Фурье: [2-!04) 1(, ,(2Улж) К,(2Уе,) — <,(2УУДК,<2)'з)] ( Г,<трл,)К,(2.Улл) т< <2 Уел) К.21 лП При пользовании этими формулами теплоотдача с торца может быть учтена условным увеличением высоты ребра й на половину толщины его торца бл/2 Веля ребро имеет треугольное сечение, то н этом случае щ=О, а следоватепьно, н в.=0, /,(0) =0 и формулы (2-103) — (2-!05) принимают вид: (2-105) (2-1Сб) (2-)ОУ) (2-105) Г (2Уе) (.2 Уе, й,=б, Г,<2~ л,) «Е,а,! ( Г,(22 л) < *.и т 1 «,22",) ) 5<аксвмальный тепловой поток через ребро треугольного сечения данной массы будет имщь место прв выполнении равенства (2-109) Формулы (2-103), (2-10<) и (2-105) громоздки п неудобны аля практических расчетов.
Поэтому расчет ребер переменного сечения можно свести к методике расчета прямьж ребер постоянного сечения. В этом случае О"= Р"Ф (2-! 10) )1' Т где (гт — количество передавае. мой теплоты в едииицу времени; /ж — поверхность охлаждения гд .Иле ребра; д=<;1/Р— плотность тепло. ваго потока Лля прямоугольного ребра, длина, высота и толщвна которого равны длине, высоте и толщине суженного ребра; е"= р пг л" сл и" хл =/(<В/Ог, бл/бг) — поправочиый рлс 2 <в е -/<в(лв, в,/в,) — еслеиеганоэффнциеит иа суженяость реб- ми элиа тра<ми ллл расчете ребре трапера; в" опревеляетсп по графику мл.лилнсгс л трегпщ а|с еменза.
рис. 2-19. Нижняя кривая (при бл/5,=1) соответствует прямому ребру постоянного сечения, а верхняя (<Ц/бе=О) — треугольному ребру. Отношение бг/О, вычисляется ио форм>ле (2-И). Теплоотдача с торца ребра при этом учитывается путем увеличения высоты ребра Ь на половину толщины торца. т! з-тт. 1ЕППОП3'ОВОДНОСта ППОСИОИ пОпуОграниченнОЙ ОднОРОднОЙ ппастнны а*г ач —,+ —,=0 ил' др' —,+ —,=О, д% ФФ дх рг' (2-П1) где Π— избыточная температура, отсчитанная от Гг, т. е. 6=! — Гь Граничные условия: (О при х=0, Д (2-11л] (О при у — ео; )(х) — Гт=р(х) прн у=0.
)(ля решения уравнения и частных производных (2-П1) воспользуемся методом разделения переменных'. Предположим, что 6= )(х, р) О(х)ф(у). Тогда уравнение (2-П1) приводится к виду = — — сопя!. Р" 06 4" !Р) РОО ФОО (2-П 3) Правая и левая части уравнения одииакпвы в постоянны. Обозначим ик через — ее. Таким образом, мы получаем два обыкновенных дифференциальных уравнения: р"(х) +е~р(х) =.О; (2-!14] т)" (у) — лев (у) = О. (2-!16) Решением дифференциального урввнешгн (2-П4) является функция вида: О(х) тСт гол (гх) +Слети (ех]. (2-116) Согласна (2-79) общее решение уравнения (2-Пб) будет иметь вид: ф(у) =С,е "+С е (2-112) ' Наюе лалроаю ыот метод рееемотрлоаетол л гл 3 лрлмевемльао х еоаачлм лееталоолерлаа теллолроет,ллоотл.
60 Рассмотрим плоскую однородную пластину тпириной 6 с постоянньпл коэффициентом теплопроводвости д н неограниченным размерам в направленвн оси Оу (рис. 2-2]) (Л. 204). Г!ред~толагается, чтп нз поверхностях пластины, определяемых координатами х.==О, х=б и уеео, гемоература поддерживается постоянной н равной гь а вдоль поверхности у=-0 шмпература является функцией координаты х, т.
е. 1=Пх). Предполагается, что пластина относительно тонкая в направлении оси Ох, а поверхности, параллельные координатной плоскости хбр, имеют идеальную тепловую изоляцию. Ввиду зтого градиешпм температур д!/дх можно пренебречь, и температурное поле такой пластины будет двухмерным.
Для двухмерной стационарной задачи без внутренних источников теплоты Лифференциальное уравнение теплопроводности запишется: Обшее решгнне уравненвя (2-111) получим после перемножения уравнений (2-116) н (2-117). Решение (2-110) будет уловлетворять граннчпому условию 6=0 прн х О, когда ф(х)-0 прв х=б, а это возможно при С~=-О. Условие 6=0 прп р — ао выполняется тогда, когда ф(р] =0 прн р — ьоо, что возможна лишь прн Се=0.
Таким образом, решенне для (2-111) прнводится к виду 6=Се шмп (ех). Для того чтобы полученное выражение удовлетворяло граничным условннм 6-:=0 пра к=-б, должно К быть я>п [кб)=0 ~шп е —.пп)б (где п=!, 2, 3 -.-)- Рзе, тзс Поэт- Каждому значению и соответствует частное ре- огракичевэзэ паэшенгпк а каждому частному решению соотвшствует стан». свое эначенне постоянной интегрирования. Общее реп)ение есть сумма частных решений Лля всех послеловательных положительных значений чнсгл и." 6= ~„'С„е ' !и("— ," х).
=.1 (2-118 Полученное решенне удовлетворяет н третьем> граничному условны, т. е. 6=0 при у — т м. Оставшиеся постоянные С„определяются нз граничных условий б=г (х) при р=б. Прн этом Р(х)= 'Ц С„зйг( — х). — > Это ранепство есть разложение функции р(х) в ряд Фурье по сннусаы. Коэффициенты ряда Фурье определяютсн следующим выражепнгм: С„=- з ') Г (х) за ( — х) бх. а Окончательное решение для температурного поля рассматриваемой задачи с учетом последнего соотношеняя можно записать в випе 6= — Яе з!п э х~р(х)мп( а х)Ыс.
(2110) =3 з Итак, окончательное решение рассыотренной двухмерной задачн после определения постяпных интегрированна представгпся суммой бесконечнгло рпцз. Аналогичным образом моною получить решение н для сплошного цилиндра прн нзмененяя температурного поля в двух измереннях. Окончательное решение, как я для плксп>ны. представитсн суммой бесконечного ридя. 61 Прн реп1еиин конкретной задачи вычисляют интеграл в уравнении (2-Н9), исходя иэ условий задания температуры. Следующим этапом шшяется вычисление членов ряда в завиеимостн от условий сходимости и требуемой точности вычислений. Например, если 1=(з=сопз1 при у=б, то )(х) =Гг, а Н(х)=-1» — Гь Интеграл а Ь е ) =-- ( ' )~=- го т В г г (х) яп ( — ху1 Ас = — — (1„— Г,) ~ — соя — ' х) ~ = — „(ф — 1,], а (л =1.
3, б, 7 ...). У!одставив этот интеграл в уравнение (2.119), получим: з* 0=(Г,— 1) — ~е ' з)п ~ —" х)+ — е яп ~ — 'х)+ 1 '(з ) з ~з + —,е яп ( — х)+...]. (2-120) Можно показать, что полученный ряд сходится. Лля вычисления яэотерм существуют различные методы. Наиболее точным явлвется метод, при котором у прлпнмается е качестле постоянного параметра. По серия кривьи, отвечающих постоинному значению у, строят изотермы.