Теплопередача (Исаченко В. П. Осипова В. А. А. Сукомел С.) (555295), страница 12
Текст из файла (страница 12)
ли жш мг 11 2.12. нсаистое Окнюкдюгме пнастины Пористые материалы находят болыпое применение в таких конструкпнях, как высокотемпературные тсплообмениики, турбинные лопатки, реактивные сопла и т. д. На практике охлаждение пористых струк- 3 тур достигается нагнетанием жидкости или газа через капилляры твердого тела. Прошке теплообмена н таких пористых системах весьма сложен. При решенин л, задачи предполагается, что вся передача га теплоты внутри плоской пластины осуществляется за счет теплопроводностн череа твердую фазу и что температуры твердого тела и жидкости почти не отлита чаются друг от друга в любой точке по- ристой структуры. Эти предположения зя сушестве|пю упрощают решение задачи [Л. 20б).
Рассмотрим показанную на рис. 2-21 яа ь плоскую пластину с постоянным коэф- фициентом теплопроводности 1 . РазмеРис. 2-2К Пористсе ахлаж ие РЫ ПЛаетппм В НаПРаВЛЕПНЯХ У И Х ВЕЛИ- елгххеа алас иин. кн и температурное поле внутри пластя- нм можно считать одномерным; последнее справедливо и лля температурыохлаждающей жидкости, т. е.
1= Цх) прн О~х(б и (ж=(ж(х) при — оо<х~(0. На поверхностп пластины при х=б температура стенки равна г,з. Температура нагнетаемой вдоль оси Ох через пластияу жидкости при х — сс Равна 1 а. ТсмпеРатУРы 1«т и Г а известны. Задан Упельный массовый расход охлаждающей жидкости 6, кг/(нз с), теплоемкость сам и теплопраподность )з„которой постоянны. Необходимо найти распрспелеиие температуры в такой пористой стенке. Будем рассматривать пористость пластины р как отношение объема пор ко всему объему материала.
Для равномерной пористости можно считать, что на елиинце поверхностл, нормальной к направлению потока жидкости, сечепне пля прохода жидкости 1„=р, а сечение тверцого скелета, лчаствуюгцего в теплопровопкости, равно )ч=-1 — 1,.†- 1 — и. Отчетим также, что если увельиыи массовый расход натекающей жидкости равен 6, то массовый расход внутри пластины будет равен 6гр. Пргкюсс переноса теплоты в таком пористом теле можно представить как теплопровоцность самой пластнны и теплообмен между твердым телом и жидкостью, протекающей через поры пластины. Плотность теплового потока за счет теплопроводностн самой пластины в сечениях х и х+е(х запишется: н р.= — л „вЂ” з(1 — р) и е *= — 1.—,„1 г+ е — „, г(х) П вЂ” лф е г ж Б условиях стационарного режима изменение теплового потока на участке г(х проиэойлет вследствие теплообмена между твердым телом и протекающей через поры жидкостью, т.
е. гй)=з — о з з = 6грмг1! или — 1 — „(1 — и)+1 е— (1 — р)+Л„--г(1 — р)г(х=бсркгй. ег ег е'е Слеповательно, пля области 0<я<О дифференциальное уравнение запишетсяг Е*т Ог а — — — =О. шя л,(1 — р) е» (а) Если обозначить л,(г — р)= ' то соотюшение (а] запишется: —,— 1, — — О. и'г ег (2-121) Аналогичным образом можно получить дифференциальное уравнение и для области †(х(О: еч ж (2-1Ялл где (е= Ост Общее решение уравнения (2-121) имеет вид: (=С,ет' + См Постоянные Сз и Са определяются из граничных условий: при х=-О 1=(ег и при х б 1=(ю 33 После опрелеленин постоннных С, н С» получаем длн области О<х< б: г = (м + -мг:-'г'-(а'"' — 1). 12-1231 Для уравнения (2-122) общее решение имеет вид: 1 =С,ег "+С,. Это уравнение должно удовлетворять граничным условиям дзя потока жидкости: при х= — оо ( =! а; ш и при х=б Л вЂ” =3 (! — Р) —.
лт лх ' Из граничных условий находим, что Сг=( ч н тогда решение для (2-!22) запишетсяг (2-124) е' — ! На основании (2-124) из уравнения (2-123) можно исключить неизвестную температур» (,г. При х=б 1 =(в=1, +(1,— 1,) е — 1 а Подставив зто значение 1ы в уравнение (2-123), получим окончательное выражеяие Лля распределения температуры в пористой пластине (О.
х<б): [2-125) Есле безразмерную телгпературу пластины (! — 1 о)1(1г — (ма) обозначить через В, ураинение (2-!26) можно записать в следующем виде: О=е (2-125') Срелняя температура в пористой пластине для заланного значения $,,3. определяемая интегралом 9= 1/б ) Вг(х, равна: о (2-126) Если в качестве паралгетра выбрать беб, зависимость (2-!26) мож. но представить, как показано на рис. 2-22. Там же лля соответсгвующих значений ачб нанесена средняя температура, вычисленная по уравнению (2-126). Решение заначи о распределении температур в пористой стенке с испарительным охлажлениеы при прутик граничных условиях нано В. П. Исачевко (Л.
55). При решении задачи предполагалось, что поры малого лиаметра равномерно распределены по объему плоской стенки 64 и пронизывают ее в поперечном направлении [рис. 2-23), Расход жидкости через поры б„ь кг/мс; температуры жидкости и стенки в любом данном сечеяии одинаковы; фнзнчсские параметры не зависят ат температуры.
Уравнения геплапроводности и граничные условия в этом случае имеют внл; — г+ "с~ — =О; ах ' л а» (2-127) к (! — У,) — б г= — « цаху„ а„(б,— !.)= — «® (2-128) (2-129) где Естся охлюкдсоие пористая стенки осуществляется без испарения охаажлакацей жидкости, т. е. г= О, то уравнение (2-139) прииииает вид: С,— С (! На,— с Т") (ж131) !) нз) — Π— а )е т-тй.
теплОЛРОЕОднасть при наличии Внутренних истОчнииОЕ теплОты В рассмотренных ранее задачах внутренние источники теплоты отсутствовали. Оливка в ряле случаев внутри объектов исследования могут протекать процессы, в резуль ате которых будет выделяться или погло- 5-87 65 где (кроме обозначений, указанных на рис 2-23) г — теплота парообрааования; ср — теплоемкосю жид- Т !р Сса-Р кости; а., и а — козффидиевты теп- й.
лаотдачи на поверхностях стенки, обращенных соответственно к газу и ват +- жидкости. Козффициесст теплопровопности «в уравнении (2-!27) вобщем слу. ' Тс т чае должен учитывать теплопровод- 1" 1 ность твердого снелета стенки и х сс охлаждающей жидкОсти. Для ме- х тааличесних пористых стенок, имеющих высокий коэффициент теплопро- ЪТТ водности н ыалый суммарный объем пар, тепяопроводностыа живко- ' и ассс ) сти можно пренебречь. В этом слу- рд Ес рз бс (с чае, как н в предылущей задаче, рвс.
з-тд распределение ссмаерагурм и ыожно принимать ).=) (! — Р). среавая температура в мммтм) юм- Опуссив промежуточные вы- стеке. кладки, приведем окончательное решение )равнения (2-)27) при граничных условиях (2-!23) и (2-129)с 1'- -' —:1 1=1,---'к- --, [1+й,-е Т"), (2-130) О+а,) Π— а )с-т' щатьси теплота. Примерами таких гфоцессов мог)т служить: выделение джоулевой теплоты при прохожденви электрического тока по проводникам; объемное выделение теплоты в тепловыделяющих элементах атомных реакторов вследствие торможения осколков делении ядер атолгною пгрючего, а также замедления потока неитронов; выделение илн поглощение теплоты при протеканиИ ряда хилгических реакций и т. д.
и При исследовании переноса теплоты в таких 3 случаях важна знать интенсивность объемного выл деления (поглощенна) теплоты, которая количественно характеризуется мощностью внутренних источенное теплоты д„Вт!иц Если величина д„положительна, го говорят, что в теле имеются положительные источники теплоты, При отрицательных значениях г)л имеются отрицательные источники а ' к (стоки) теплоты, В зависимости от особенностей изменения ве- личины д в пространстве можно говорить о ючечгиаамдевв» „аасгмю пых, линейныл, повеРхностных и объемных источ(гра«ачнне тсаовн» никах теплоты.
талтлега нгха). Лля стационарного режима прн ддд =О диф. ференциаггьное уравнение теплопроводвости (1-21) при наличии источников теплоты имеет вип: р'1+ ч' =О. (2-132) а) Теллолроаадносгь однородной пластины рассмотрим длинную пластину, толщина которой 26 в величина малая по сравнению с двуыя другими размерами. Источники теплоты равномерно распретелены по объему и равны гу =сопз1. Затаим козффициеггты теплоатдачи а и температура жидкости л вдали от пластины 1 ь прячем о=сопя( и 1 =сола(. Благодаря равномерному охлаждению 1 " гр;": температуры обеих поверхностей пластины одинаковы. При указанных условиях температура пластины будет нзменятьгя только вдоль осн х, ла направленной нормально к поверхности тела. Температуры на оси пластины и на ее поверхности обозначим соответственно через й, и 1,; зти температуры неизвестны (рис.