Главная » Просмотр файлов » Часть 3. Математический анализ - кратные и криволинейные интегралы.

Часть 3. Математический анализ - кратные и криволинейные интегралы. (509317), страница 27

Файл №509317 Часть 3. Математический анализ - кратные и криволинейные интегралы. (Часть 3. Математический анализ - кратные и криволинейные интегралы.) 27 страницаЧасть 3. Математический анализ - кратные и криволинейные интегралы. (509317) страница 272013-08-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 27)

полученная в результате 7 пересечения поверхности Я цилиндра Т = ((х, У. 5) б Я~: х + у ~С аз, х б И) с плоскостью х з Яю заданной уравнением — + — = 1, а ) О, я ) О, пробегаемая протяв хода часовой стрелки, а а если смотреть с положительной стороны оси Ох. М По форыуле Стокса (9) имеем ю» -гЦю 9.99*» ьь=-юД[ + д+ )и», 52 52 где зз = Т й Яг — ь2иожество всех точек эллипса оз=)(х,у,я)ияс:х +у (~а, — + — =1), ' а я сова., сов Д. соху — направляющие косинусы нормали и к плоскости 52. Множество точек Яз проектируется на круг Р = ((х, У) б м~: 52+у ( (а ). Поскольку нормаль к плоскости 52 образует острый угол с ортом й оси 05, то в кюкдой из формул я» Ф х 1 созе ж *ДГ»+7.' *ЛГ»+».' +»5+".+ У перед радикалом в знаменателе следует взять знак "+"..

Перехода от поверхностного инте- грала к двоякому н принимая во внимание равенство ИЯ = 1+ я' + я„' ах ву, получим ~2 1 = 3 ~~ (я'(х, у)+ х'(х, у) — 1) дх Иу. о $ б. Формулы Остроградского, Грина и Сток такса 199 л = й — -х то х', = —, х = О. Следовал Так как на множестве 8~ выполняется равенство х = — —,, з —,, з = тельно, — г // (1+ ) сгх лгу = -2 1+ -~ рта = -2рга( + ). а и 201. 1= (у +х)Нх+(х + ) у з з з згй + (хз + уз) 4г, где у — кривая, полученная ол с е ы 5 = Дх. ур х) б Вз: х + у + х = 211хр х > ) в результате пересечения полусф Р е ол 'с е ы и наименьшая область остается слева.

ограниченная ею на внешней стороне полусферы наиыень а Ч Применив формулу Стокса, получим поверхностный интеграл 1=2 (у — х)буйх+(х — х)Охах+(х — у)йхйу= зр = 2 // ((у — х) соз о + (х — х) соз рб + (х — у) соз -р) а'Яр Яр я, вы езанный из нее поверхностью яр, сохо, созлу, созт — нагде Яз — кусок полусферы, выр некто а нормали и к Яз, гга множестве з ы правляющие косинусы ве р р, гг й Р б аз ют острый — хз — з, г' = — з, х' = — ". Так как вектор и н орт л оси г о разу с,у, соз .

пе ед радикалом в знаменателе следует ' ол, то в формулах для вычисления соз о, совру, сох з перед рад угол, г' Ых й, получим взять знак "+ . ринам "»".и р и-»' р*.р 1 ы 2 //((у — х(х, у))(-х' (х, у)) + (х(х, у) — х)( — гз(х, у)) + (х — у)) йх йу = ,а( ° 1 /' 1'(у - '(* ))(™) + ('(* "' х) у +. у '1 Ь бр рх гя ц (1 - — "~ бх йу, и где Р = ((х. у) Е м~: хз+ у ( 2гх). Поскольку /2з- 2 — р. -~р. п ,Гз з-зр то окончательно имеем 1 = 2Я Охи = гяйг .

З» 2 и 202. — а р( + Ых, где у — заыкнугая кривая, заданная уравнениями 2. 1=~ у х ах+я * у х'у х = а сох з, у = асов 21, х = асов ЗГ, робегаемая в направлении возрастания параметра Г. Ч и нзм М = (х, х) пробегает часть кривой у ч П и изменении г от О до з подвижная точка М = (, у, 2 чкаМ ол жноы направлении — от точки М~ до к ~~А ~~им~о а«ладываются, н зта кривая ю часть к ивой т в протпвоположн и т чкн Ме. Таким образом, точки замкнутой крпвррй з взаимно накл пе ограничивает нпкаяой поверхности.

Слсдоаател ио, 200 Гл. 2. Кратныен криволинейные интегралы Упражнения для самостоятелъной работы Прнл~еняя формулу Грина, вычислить криволинейные интегралы: 139. !=уху бу — х убх,где у=((х,у)ЕИг:хг+уг=а ). 140. 1 = у(х + у) йх — (х — у) Ау, где ", = ((х, у) Е Иг: -,т + улт = 1) . т 141. ? = у е ~» ег ~(соя 2ху ах+ зщ 2хуЫу), где т = ((х, у) Е Иг: ха + у = Аг).

7 142. Какому условию должна удовлетворять дифференцируеыая функция (х, у) Р(х, у), чтобы криволинейный интеграл Г(х, у)(убх+ хну) А»В не зависел от вида пути интегрирования? 143. Вычислить 1 = — у — ггт —, если Х = ах+ бу, У = ох+ бу и простой замкиутый аг-уах 2. г хгег контур ", окружает начало координат (аб — бс ф 0).

144. Вычислить интеграл 1 (см. предыдущую задачу), если Х = р(х, у). ?» = 9(х. у) и простой контур ", окружает начало координат, причем кривые, определяемые уравнениями с»(х, у) = О и 0(х, у) = О, имеют несколько простых точек пересечения внутри контура т. 145.

Вычггсл1гть площадь фигуры, ограниченной кривой т, заданной уравнением (х+ у)"+ + = ах"у, а > О. п > О, ил > О. 146. Доказатгч что объелг тела, образованного вращением вокруг осп Ох простого замкнутого контура;, расположенного в верхней полуплоскости у > О, равен К = —:г ~ уг бх. Применяя формулу Остроградского, преобразовать следующие поверхностные интегралы, если гладкая поверхность Я ограничивает конечный объем Н н соха, созб, соз;— направляющпе косинусы внешней норлгали и к поверхности Я: 14Т )')»хгЫуаг+ у 4»Ых+ гг бхбр 148 )) '" ~г'"»~'"' ао г г » +г +» 149. Д' (ф соя о+ ф соз)? 4- фебу) ЫЯ. 5 150.

Вычислить интеграл г' = ц х 4уйг+ уг Ыггбх+ г бх бу,где Я вЂ” внешняя с~арона г границы куба К = ((х. у, г) б Иг: 0 ( х ( а, О ( у ( а, О ~ (г ~ (а). 151. Найти объем тела Т. ограниченного поверхностью Я, аацапиой уравнениями г = асахи, у = вял е, г = -а+ а сох е, а > О, а > О, н плоскостямн х = О, г = О.

152. Доказать формулу щ — 'ге»»с = -' ц соя(т, и) ао, где Я вЂ” край компакта К, и — внешняя единичнал норыаль к поверхности Я в точке (с, «, с). г = (б — х)г+(у — «)г+(ь — г)з и т ж (б — х, « — у, г' — г) — радиус-вектор, идущий от точки (х, у, г) к точке Я, «, 1). 153. Вычислить интеграл ) х~у йх+ бу+ гЫг, гце; = ((х, у, г) Е Иг; х + у ?л~, г = 0): а) непосредственно; б) используя формулу Стокса (в качестве поверхности В а "у»' ~1» "» " х-» — «').

г Р " исгти и иояожггтельном направаеннн. 1 6. Элементы векторного анализа 201 164. Применяя формулу Стокса, вычислить криволинейный интеграл у у Ыя+ я йу+ я 4я, 7 где -, — окружность, полученная в результате пересечения сферы Я = ((х, у, з) б Й х + уз+ яэ = а ) с плоскостью, заданной уравнением я+ у+я = О, пробегаемая против хода часовой стрелки. если смотреть с положительной стороны осн Оя.

166. Вычислить интеграл (яэ — уэ) йх+ (у — хэ) Ыу+ (г — ху) йэ, яюВ взятый по отрезку винтовой линии, заданной уравнениями х = асов р, у = амит, г = — т, от точки А = (а, О. О) до точки В = (а, О. Й). Прил~екал формулу Стокса, вычислить интегралы: 166. 1 = у(у+ г) зя+ (э+ х)Ыу+ (я+ у) Иг, где ", — эллипс. заданный уравнениями я = аз1п Г. у = 2аз)п1созй г = асозэ Д 0 ( 1 ( т, пробегаемый в направлении возрастания параметра д г — уг(уэ — э) 1я Ф (яэ — яэ) 4у Ф (хэ — ут) Иэ, где ; — сечение поаертиостп куба К = ((х. у. з) б П~: О < с < а, 0 ( у ( а, 0 ( з < а] плоскостью, заданной уравнением э я+ у+ л = -а, пробегаемое против хода часовой стрелки, если смотреть с положительной г стороны осн Ох. ~ 6.

Элементы векторного анализа 6.1. Скалярные и векторные поля. Если ка'кдой точке М пространства Й~, пг > 1, или некоторой области этого пространства поставлено в соответствие некоторое число у(М), то говорят. что задано скалярное поле 1 (например. поле давления в атлюсфере. поле плотности сплошного распределения массы в объеме 1Г и т. д.). Если каждой ~очке М пространства И~, ш ) 1, или области этого пространства поставлен в соответствие некоторый вектор п(М), то говорят, что задано векторное поле и (наприлгер, поле тяготения системы масс пли сплошного распределения лгассы в ограничениолг объеме, иоле плотности импульса, поле плотности тока, поле магнитных сил и т.

п.). 6.2. Плотность аддптпвной функции областей. Восстановление алдитнвной функции по ее плотности. Пусть Ф(К) — аддитивная функция компакта К, т.е. функция, удовлетворяющая усло- вию Ф(К, О К,) = Ф(К1) + Ф(Кэ) для любых двух компактов без общих внутренних точек. Число гз(М) = йш Ф(К) к-вг рК Ф(К) = ~т(н) г*. к (2) где дЛ вЂ” ыера компакта К, называется плошиосглью Фрикико Ф в точке М б К. Если плотность гз(М) аддитивной функции областей Ф непрерывна или кусочно — непрерывна на компакте К, то Гл.

2. Кратные п эгрнволиненные интегралы б.З. Дифференциальный оператор Гамкльтока. Пусть (ээ(М), и(М), ... ) — множество скалярных н векторных полей, имеющих непрерывные производные по всем координатам, и пусть Т(р! = Т(р; Р(М), и(М), ... ) — некоторое выражение, имеющее смысл скаляра или вектора, линейное относительно произвольного вектора р: Т(иэ р, + оэрг) = аэ Т! р, ) + аэТ(рэ), где оэ, аэ — произвольные действительные числа. Пусть р т ау+ 61+ сй. Тогда, в силу линейности Т, имеем Т(р) = аТ(г) + !эТ(у) + сТ(й). (1) 202 Полагаем Т(~) = — Т(!) + — Т(Я+ — Т(й), ...д .

д д дх ду дг (2) заменяя в (1) компоненты вектора р символами дифференцирования по 'х, у и г соответ- ственно. Символ 1» (набла) называется дифференциальным оператором Гамильтона. В векторном анализе накболее важными выраженияьги Т, о которых упоминалось выше, являются: а) Т(Р! эо) = РР (эо — скалярное поле); б) Т(Р! и) = (Р, и) (скалярное произведение); в) Т(Р! и) = [Р, и] (векторное произведение). На основании (2) получаем: а) Т(ч) = 1тю т ~~~!+ олу'+ — "й; б) Т( ч) = (1т, и) = о + дд + —, если и = (Р, !г, Я); в) Т(Ч) = [гу, и] = — — — = ( — — — ) г+ ( — — — ) у+ ~ — — ) л. о о о /оя оо'э . ог он ° Уоо ог1 о» оу о» ( зу 3» ! о э» ~о оу гэ' Р !г В Вектор в правой части а) называется градисноэол скалярного поля Р, Выражение в правой части б) называется расходияостью (пли диогрггнцигб) огкториого поля и.

Характеристики

Тип файла
DJVU-файл
Размер
1,97 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее